Return to search

The deposition and characterization of tin oxide based heterojunction structures.

by Man Wah-Kit. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1996. / Includes bibliographical references (leaves 177-180). / LIST OF FIGURES / LIST OF TABLES / abstract --- p.1 / Chapter 1. --- introduction --- p.3 / Chapter 2. --- fabrication process / Chapter 2-1 --- INTRODUCTION --- p.7 / Chapter 2-2 --- PROCESS DEVELOPMENT --- p.8 / Chapter 2-3 --- FABRICATION PROCEDURES FOR TIN FILMS --- p.10 / Chapter 2-4 --- FABRICATION PROCEDURES FOR TIN OXIDE FILMS --- p.14 / Chapter 2-5 --- FABRICATION THEORY --- p.21 / Chapter 2-6 --- OXYGEN ION IMPLANTATION OF TIN FILMS --- p.24 / Chapter 3. --- structural characterization / Chapter 3-1 --- INTRODUCTION --- p.30 / Chapter 3-2 --- MICROSTRUCTURE / Chapter 3-2-1 --- SOME RELATED THEORIES OF GRAIN GROWTH / Chapter (1) --- Classical Theory of Grain Growth --- p.30 / Chapter (2) --- Hillock Growth --- p.31 / Chapter (3) --- Dislocation Creep Theory --- p.33 / Chapter (4) --- Biaxial Stress in Thin Films --- p.35 / Chapter (5) --- Surface Cluster Growth --- p.37 / Chapter 3-3 --- EXPERIMENTATION AND RESULTS / Chapter 3-3-1 --- MICROSTRUCTURAL ANALYSIS UNDER OPTICAL MICROSCOPE --- p.39 / Chapter 3-3-2 --- THE STRESS AND HILLOCK HEIGHT ANALYSIS OF TIN OXIDE FILMS --- p.48 / Chapter 3-3-3 --- MICROSTRUCTURAL ANALYSIS BY MEANS OF ATOMIC FORCE MICROSCOPE (AFM) --- p.52 / Chapter 3-3-4 --- MICROSTRUCTURAL ANALYSIS BY X-RAY DIFFRACTION --- p.69 / Chapter 3-3-5 --- SURFACE ANALYSIS BY MEANS OF X-RAY PHOTOELECTRON SPECTROSCOPY / Chapter (1) --- Introduction --- p.73 / Chapter (2) --- Basic Theory --- p.73 / Chapter (3) --- Experimentation And Results --- p.75 / Chapter 3-3-6 --- SURFACE STUDY OF ION IMPLANTED TIN OXIDE FILMS / Chapter (1) --- Experimental Results --- p.82 / Chapter 3-4 --- DISCUSSION / Chapter 3-4-1 --- QUALITATIVE ANALYSIS OF MICROSTRUCTURE WITH THE OPTICAL MICROSCOPE --- p.88 / Chapter 3-4-2 --- QUALITATIVE ANALYSIS OF MICROSTRUCTURE WITH SEM AND AFM / Chapter (1) --- Grain Growth of Tin Oxide Films --- p.89 / Chapter (2) --- Dependence of Grain Size on Deposition Rate --- p.91 / Chapter (3) --- Dependence of Grain Size on Film Thickness --- p.92 / Chapter (4) --- Dependence of Grain Size on Substrate Temperature --- p.92 / Chapter (5) --- Origin of Hillock Growth of Tin Oxide Films --- p.93 / Chapter 3-4-3 --- FILM COMPOSITIONAL ANALYSIS WITH X-RAY DIFFRACTION --- p.95 / Chapter 3-4-4 --- SURFACE ANALYSIS WITH X-RAY PHOTOELECTRON SPECTROSCOPY …… --- p.95 / Chapter 3-4-5 --- SURFACE ANALYSIS OF OXYGEN IMPLANTED TIN FILMS --- p.96 / Chapter 4. --- OPTICAL CHARACTERIZATION / Chapter 4-1 --- INTRODUCTION --- p.98 / Chapter 4-2 --- THEORY / Chapter (1) --- Free Electron Model --- p.99 / Chapter (2) --- Effect of Film Thickness --- p.100 / Chapter (3) --- Effect of Oxygen Contents --- p.101 / Chapter (4) --- Electron-Lattice Interaction and Bandgap Studies --- p.102 / Chapter 4-3 --- EXPERIMENTATION AND RESULTS --- p.105 / Chapter 4-4 --- DISCUSSION / Chapter 4-4-1 --- BANDGAP STUDIES FOR TIN OXIDE FILMS WITH DIFFERENT DEPOSITION CONDITIONS / Chapter (1) --- Variation of Film Thickness --- p.122 / Chapter (2) --- Film Appearance --- p.123 / Chapter (3) --- Variation of Substrate Temperature --- p.123 / Chapter (4) --- Variation of Oxidation Conditions --- p.123 / Chapter 5. --- ELECTRICAL CHARACTERIZATION / Chapter 5-1 --- INTRODUCTION --- p.126 / Chapter 5-2 --- RELATED THEORY / Chapter 5-2-1 --- CURRENT-VOLTAGE (I-V) CHARACTERISTICS --- p.127 / Chapter 5-2-2 --- CAPACITANCE-VOLTAGE (C-V) CHARACTERISTICS --- p.131 / Chapter 5-2-3 --- RELATION OF ELECTRICAL TO STRUCTURAL PROPERTIES / Chapter (A) --- Effects of Deposition Conditions --- p.133 / Chapter (B) --- Effects of Grain Boundaries --- p.133 / Chapter (C) --- Effects of Ionic Impurities --- p.134 / Chapter (D) --- Effects of The Interface Properties --- p.134 / Chapter 5-2-4 --- MEASURING TECHNIQUES / Chapter (A) --- I-V Measurment of Tin Oxide on a Silicon Substrate --- p.136 / Chapter (B) --- C-V Measurement of Tin Oxide Films on Silicon Substrates --- p.137 / Chapter (C) --- Electrical Measurement of Tin Oxide Films on a Quartz Substrate --- p.137 / Chapter 5-3 --- EXPERIMENTATION --- p.138 / Chapter 5-4 --- RESULTS --- p.141 / Chapter 5-5 --- DISCUSSION / Chapter 5-5-1 --- Analysis of the Conduction Mechanism for Sn02/Si n-p Heterojunctions --- p.161 / Chapter 5-5-2 --- Analysis of the Conduction Mechanism for Sn02/Si n-n Heterojunctions --- p.162 / Chapter 5-5-3 --- Effect on the Conduction Mechanisms of Film Thickness --- p.164 / Chapter 5-5-4 --- Effect on the Conduction Mechanisms of Oxidation Time --- p.166 / Chapter 5-5-5 --- Interfacial Properties of SnOx/Si Heterojunctions --- p.166 / Chapter 5-5-6 --- Electrical Properties of SnOx Films on Quartz / Chapter (1) --- Dependence of Film Conductivity on Measuring Temperatures --- p.168 / Chapter (2) --- Dependence of Film Conductivity on Oxidation Time --- p.168 / Chapter (3) --- Dependence of Film Conductivity on Oxidation Temperature --- p.169 / Chapter (4) --- Invariance of Film Conductivity at Some Certain Measuring Temperatures --- p.170 / Chapter (5) --- Activation Energy of Sn02 Films on Quartz --- p.170 / Chapter 6. --- CONCLUSIONS --- p.172 / Chapter 7. --- FUTURE WORKS --- p.175 / Chapter 8. --- REFERENCES --- p.177 / Chapter 9. --- APPENDICES / Chapter 9-1 --- APPENDIX A List of photos --- p.181 / Chapter 9-2 --- APPENDIX B (1) ED AX results for some selected regions on samples with hillocks --- p.182 / Chapter (2) --- Relations between mean surface roughness and oxidation conditions --- p.185 / Chapter (3) --- XPS original data and typical XPS spectra for vacuum- evaporated SnO2 thin film --- p.186 / Chapter 9-3 --- "APPENDIX C Variations of optical parameters, refractive index n and extinction coefficient k in visible region with different oxidation conditions" --- p.189 / Chapter 9-4 --- APPENDIX D Electrical results for Sn02/Si heterojunction s --- p.191 / Chapter 9-5 --- APPENDIX E Calculations of band diagram for Sn02/Si heterojunctions --- p.194 / Chapter 9-6 --- APPENDIX F Resistivity versus impurity concentration for silicon at 300K --- p.196

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_321514
Date January 1996
ContributorsMan, Wah-Kit., Chinese University of Hong Kong Graduate School. Division of Electronic Engineering.
PublisherChinese University of Hong Kong
Source SetsThe Chinese University of Hong Kong
LanguageEnglish
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xii, 196 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0025 seconds