<p> This work focuses on solving the general optimal control problems with smart-learning-enabled and theory-supported optimal control (SET-OC) approaches. The proposed SET-OC includes two main directions. Firstly, according to the basic idea of the direct method, the smart-learning-enabled iterative optimization algorithm (SEIOA) is proposed for solving discrete optimal control problems. Via discretization and reformulation, the optimal control problem is converted into a general quadratically constrained quadratic programming (QCQP) problem. Then, the SEIOA is applied to solving QCQPs. To be specific, first, a structure-exploiting decomposition scheme is introduced to reduce the complexity of the original problem. Next, an iterative search, combined with an intersection-cutting plane, is developed to achieve global convergence. Furthermore, considering the implicit relationship between the algorithmic parameters and the convergence rate of the iterative search, deep learning is applied to design the algorithmic parameters from an appropriate amount of training data to improve convergence property. To demonstrate the effectiveness and improved computational performance of the proposed SEIOA, the developed algorithms have been implemented in extensive real-world application problems, including unmanned aerial vehicle path planning problems and general QCQP problems. According to the theoretical analysis of global convergence and the simulation results, the efficiency, robustness, and improved convergence rate of the optimization framework compared to the state-of-the-art optimization methods for solving general QCQP problems are analyzed and verified. Secondly, the onboard learning-based optimal control method (L-OCM) is proposed to solve the optimal control problems. Supported by the optimal control theory, the necessary conditions of optimality for optimal control of the optimal control problem can be derived, which leads to two two-point-boundary-value-problems (TPBVPs). Then, critical parameters are identified to approximate the complete solutions of the TPBVPs. To find the implicit relationship between the initial states and these critical parameters, deep neural networks are constructed to learn the values of these critical parameters in real-time with training data obtained from the offline solutions. To demonstrate the effectiveness and improved computational performance of the proposed L-OCM approaches, the developed algorithms have been implemented in extensive real-world application problems, including two-dimensional human-Mars entry, powered-descent, landing guidance problems, and fuel-optimal powered descent guidance (PDG) problems. In addition, considering there is no thorough analysis of the properties of the optimal control profile for PDG when considering the state constraints, a rigid theoretical analysis of the fuel-optimal PDG problem with state constraints is further provided. According to the theoretical analysis and simulation results, the optimality, robustness, and real-time performance of the proposed L-OCM are analyzed and verified, which indicates the potential for onboard implementation. </p>
Identifer | oai:union.ndltd.org:purdue.edu/oai:figshare.com:article/22735253 |
Date | 03 May 2023 |
Creators | Sixiong You (14374326) |
Source Sets | Purdue University |
Detected Language | English |
Type | Text, Thesis |
Rights | CC BY 4.0 |
Relation | https://figshare.com/articles/thesis/SMART-LEARNING_ENABLED_AND_THEORY-SUPPORTED_OPTIMAL_CONTROL/22735253 |
Page generated in 0.0023 seconds