Databases are all around us, and ensuring their efficiency is of great importance. Database optimisation has many parts and many methods, two of these parts are database tuning and database optimisation. These can then further be split into methods such as indexing. These indexing techniques have been studied and compared between Database Management Systems (DBMSs) to see how much they can improve the execution time for queries. And many guides have been written on how to implement query optimisation and indexes. In this thesis, the question "How does indexing and query optimisation affect response time in PostgreSQL?" is posed, and was answered by investigating these previous studies and theory to find different optimisation techniques and compare them to each other. The purpose of this research was to provide more information about how optimisation techniques can be implemented and map out when what method should be used. This was partly done to provide learning material for students, but also people who are starting to learn PostgreSQL. This was done through a literature study, and an experiment performed on a database with different table sizes to see how the optimisation scales to larger systems. What was found was that there are many use cases to optimisation that mainly depend on the query performed and the type of data. From both the literature study and the experiment, the main take-away points are that indexes can vastly improve performance, but if used incorrectly can also slow it. The main use cases for indexes are for short queries and also for queries using spatio-temporal data - although spatio-temporal data should be researched more. Using the DBMS optimiser did not show any difference in execution time for queries, while correctly implemented query tuning techniques also vastly improved execution time. The main use cases for query tuning are for long queries and nested queries. Although, most systems benefit from some sort of query tuning, as it does not have to cost much in terms of memory or CPU cycles, in comparison to how indexes add additional overhead and need some memory. Implementing proper optimisation techniques could improve both costs, and help with environmental sustainability by more effectively utilising resources. / Databaser finns överallt omkring oss, och att ha effektiva databaser är mycket viktigt. Databasoptimering har många olika delar, varav två av dem är databasjustering och SQL optimering. Dessa två delar kan även delas upp i flera metoder, så som indexering. Indexeringsmetoder har studerats tidigare, och även jämförts mellan DBMS (Database Management System), för att se hur mycket ett index kan förbättra prestanda. Det har även skrivits många böcker om hur man kan implementera index och SQL optimering. I denna kandidatuppsats ställs frågan "Hur påverkar indexering och SQL optimering prestanda i PostgreSQL?". Detta besvaras genom att undersöka tidigare experiment och böcker, för att hitta olika optimeringstekniker och jämföra dem med varandra. Syftet med detta arbete var att implementera och kartlägga var och när dessa metoder kan användas, för att hjälpa studenter och folk som vill lära sig om PostgreSQL. Detta gjordes genom att utföra en litteraturstudie och ett experiment på en databas med olika tabell storlekar, för att kunna se hur dessa metoder skalas till större system. Resultatet visar att det finns många olika användingsområden för optimering, som beror på SQL-frågor och datatypen i databasen. Från både litteraturstudien och experimentet visade resultatet att indexering kan förbättra prestanda till olika grader, i vissa fall väldigt mycket. Men om de implementeras fel kan prestandan bli värre. De huvudsakliga användingsområdena för indexering är för korta SQL-frågor och för databaser som använder tid- och rum-data - dock bör tid- och rum-data undersökas mer. Att använda databassystemets optimerare visade ingen förbättring eller försämring, medan en korrekt omskrivning av en SQL fråga kunde förbättra prestandan mycket. The huvudsakliga användingsområdet för omskriving av SQL-frågor är för långa SQL-frågor och för nestlade SQL-frågor. Dock så kan många system ha nytta av att skriva om SQL-frågor för prestanda, eftersom att det kan kosta väldigt lite när det kommer till minne och CPU. Till skillnad från indexering som behöver mer minne och skapar så-kallad överhead". Att implementera optimeringstekniker kan förbättra både driftkostnad och hjälpa med hållbarhetsutveckling, genom att mer effektivt använda resuser.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-306703 |
Date | January 2021 |
Creators | Inersjö, Elizabeth |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2021:821 |
Page generated in 0.0023 seconds