Cancer is a group of diseases that are characterized by abnormal cell growth and is considered a leading cause of death globally. There are a number of different cancer treatment modalities, one of which is radiation therapy. In radiation therapy treatment planning, it is important to make sure that enough radiation is delivered to the tumor and that healthy organs are spared, while also making sure to account for uncertainties such as misalignment of the patient during treatment. To reduce the workload on clinics, data-driven automated treatment planning can be used to generate treatment plans for new patients based on previously delivered plans. In this thesis, we propose a novel method for robust automated treatment planning where a deep learning model is trained to deform a dose in accordance with a set of potential scenarios that account for the different uncertainties while maintaining certain statistical properties of the input dose. The predicted scenario doses are then used in a robust optimization problem with the goal of finding a treatment plan that is robust to these uncertainties. The results show that the proposed method for deforming doses yields realistic doses of high quality and that the proposed pipeline can potentially generate doses that conform better to the target than the current state of the art but at the cost of dose homogeneity. / Cancer är ett samlingsnamn för sjukdomar som karaktäriseras av onormal celltillväxt och betraktas som en ledande dödsorsak globalt. Det finns olika typer av cancerbehandling, varav en är strålterapi. Inom strålterapiplanering är det viktigt att säkerställa att tillräckligt med strålning ges till tumören, att friska organ skonas, och att osäkerheter som felplacering av patienten under behandlingen räknas med. För att minska arbetsbelastningen på kliniker används data-driven automatisk strålterapiplanering för att generera behandlingsplaner till nya patienter baserat på tidigare levererade behandlingar. I denna uppsats föreslår vi en ny metod för robust automatisk strålterapiplanering där en djupinlärningsmodell tränas till att deformera en dos i enlighet med en mängd potentiella scenarion som motsvarar de olika osäkerheterna medan vissa statistiska egenskaper bibehålls från originaldosen. De predicerade scenariodoserna används sedan i ett robust optimeringsproblem där målet är att hitta en behandlingsplan som är robust mot dessa osäkerheter. Resultaten visar att den föreslagna metoden för dosdeformation ger realistiska doser av hög kvalitet, vilket i sin tur kan leda till robusta doser med högre doskonformitet än tidigare metoder men på bekostnad av doshomogenitet.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-302568 |
Date | January 2021 |
Creators | Eriksson, Oskar |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2021:502 |
Page generated in 0.0026 seconds