La propagation des ondes sismiques dans les milieux poreux multiphasiques présente des enjeux nombreux, tant sur le plan environnemental (risques naturels, géotechnique, pollutions de nappes...) que pour les réservoirs (aquifères, hydrocarbures, stockages de CO2...). L'utilisation des ondes sismiques pour étudier ces milieux se justifie par le fait qu'en se propageant, les ondes sont déformées par le milieu qu'elles traversent et contiennent ainsi des informations aux capteurs sur les phases fluides et solides et sur le squelette poreux. Ce travail de thèse s'intéresse aux caractéristiques des ondes sismiques dans les milieux multiphasiques (plusieurs phases fluides et solides), depuis la description physique jusqu'à la caractérisation des paramètres constitutifs par inversion, en passant par la modélisation numérique 2D de la propagation. La première partie du travail a consisté à décrire la physique des milieux multiphasiques (phase par phase et leurs intéractions dynamiques) en utilisant des méthodes d'homogénéisation pour se ramener à un milieu équivalent défini par sept paramètres. Ainsi, dans des milieux simple porosité saturés et dans des milieux plus complexes (double porosité, partiellement saturés ou visco-poroélastiques), je peux calculer la propagation des ondes sismiques sans approximation. En effet, j'utilise une méthode numérique dans le domaine fréquence-espace qui permet de prendre en compte tous les termes qui dépendent de la fréquence sans approximation. La discrétisation spatiale utilise une méthode d'éléments finis discontinus (Galerkin discontinu) qui permet de considérer des milieux hétérogènes.Je montre notamment que les attributs sismiques (vitesses et atténuations) des milieux poreux complexes sont fortement dispersifs et les formes d'ondes complètes, calculées sans approximation, sont fortement dépendantes de la description physique du milieu. La caractérisation des paramètres poroélastiques s'effectue par inversion. Une méthode en deux étapes a été proposée : la première consiste en une inversion ''classique'' (tomographie, inversion des formes d'ondes complètes) des données (sismogrammes) pour obtenir des paramètres macro-échelles (attributs sismiques). La seconde étape permet de reconstruire, à partir des paramètres macro-échelles, les paramètres poroélastiques micro-échelles. Cette étape d'inversion utilise une méthode d'optimisation semi-globale (algorithme de voisinage). Une analyse de sensibilité montre qu'en connaissant a-priori certains paramètres, on peut inverser avec précision les paramètres du squelette poroélastique ou retrouver la nature du fluide saturant, à partir des vitesses de propagation. En revanche, pour retrouver la saturation en fluide, il est préférable de connaître les atténuations. Deux applications réalistes (monitoring de réservoir et hydrogéophysique) mettent en oeuvre ce type d'inversion en deux étapes et démontrent qu'à partir de données estimées par des méthodes classiques d'imagerie, on peut remonter à certains paramètres poroélastiques constitutifs.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00657366 |
Date | 25 November 2011 |
Creators | Dupuy, Bastien |
Publisher | Université de Grenoble |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0022 seconds