Return to search

Sparse and Scale-Invariant Methods in Image Processing / Méthodes parcimonieuses et invariantes d'échelle en traitement d'image

Dans cette thèse, on présente de nouvelles approches à base de parcimonie et d'invariance d' échelle pour le développement de techniques rapides et efficaces en traitement d'images. Au lieu d'utiliser la norme l1 pour imposer la parcimonie, on exploite plutôt des pénalités non-convexes qui encouragent plus la parcimonie. On propose une approche de premier ordre pour estimer une solution d'un opérateur proximal non-convexe, ce qui permet d'exploiter facilement la non-convexité. On étudie aussi le problème de pluri-parcimonie quand le problème d'optimisation est composé de plusieurs termes parcimonieux. Ce cas survient généralement dans les problèmes qui nécessitent à la fois une estimation robuste pour rejeter les valeurs aberrantes et exploiter une information de parcimonie connue a priori. Ces techniques sont appliquées à plusieurs problèmes importants en vision par ordinateur bas niveau telles que le lissage sélectif, la séparation d'images, l'intégration robuste et la déconvolution. On propose aussi d'aller au-delà de la parcimonie et apprendre un modèle de mapping spectral non-local pour le débruitage d'images. La notion d'invariance d' échelle joue aussi un rôle important dans nos travaux. En exploitant ce principe, une définition précise des contours est définie, ce qui peut être complémentaire à la notion de parcimonie. Plus précisément, on peut construire des représentations invariantes pour la classification en se basant sur une architecture de réseaux convolutionnels profonds. L'invariance d' échelle permet aussi d'extraire les pixels qui portent les informations nécessaires pour la reconstruction ou aussi améliorer l'estimation du flot optique sur les images turbulentes en imposant la parcimonie comme régularisation sur les exposants de singularité locaux. / In this thesis, we present new techniques based on the notions of sparsity and scale invariance to design fast and efficient image processing applications. Instead of using the popular l1-norm to model sparsity, we focus on the use of non-convex penalties that promote more sparsity. We propose to use a first-order approximation to estimate a solution of non-convex proximal operators, which permits to easily use a wide rangeof penalties. We address also the problem of multi-sparsity, when the minimization problem is composed of various sparse terms, which typically arises in problems that require both a robust estimation to reject outliers and a sparse prior. These techniques are applied to various important problems in low-level computer vision such as edgeaware smoothing, image separation, robust integration and image deconvolution. We propose also to go beyond sparsity models and learn non-local spectral mapping with application to image denoising. Scale-invariance is another notion that plays an important role in our work. Using this principle, a precise definition of edges can be derived which can be complementary to sparsity. More precisely, we can extractinvariant features for classification from sparse representations in a deep convolutional framework. Scale-invariance permits also to extract relevant pixels for sparsifying images. We use this principle as well to improve optical ow estimation on turbulent images by imposing a sparse regularization on the local singular exponents instead of regular gradients.

Identiferoai:union.ndltd.org:theses.fr/2015BORD0139
Date01 December 2015
CreatorsBadri, Hicham
ContributorsBordeaux, Bordeaux, Université Mohammed V-Agdal (Rabat, Maroc). Faculté des sciences, Yahia, Hussein, Aboutajdine, Driss
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0027 seconds