L'imagerie par résonance magnétique fonctionnelle (IRMf) permet de mesurer l'activité cérébrale à travers le flux sanguin apporté aux neurones. Dans cette thèse nous évaluons la capacité de modèles biologiquement plausibles et issus de la vision par ordinateur à représenter le contenu d'une image de façon similaire au cerveau. Les principaux modèles de vision évalués sont les réseaux convolutionnels.Les réseaux de neurones profonds ont connu un progrès bouleversant pendant les dernières années dans divers domaines. Des travaux antérieurs ont identifié des similarités entre le traitement de l'information visuelle à la première et dernière couche entre un réseau de neurones et le cerveau. Nous avons généralisé ces similarités en identifiant des régions cérébrales correspondante à chaque étape du réseau de neurones. Le résultat consiste en une progression des niveaux de complexité représentés dans le cerveau qui correspondent à l'architecture connue des aires visuelles: Plus la couche convolutionnelle est profonde, plus abstraits sont ses calculs et plus haut niveau sera la fonction cérébrale qu'elle sait modéliser au mieux. Entre la détection de contours en V1 et la spécificité à l'objet en cortex inférotemporal, fonctions assez bien comprises, nous montrons pour la première fois que les réseaux de neurones convolutionnels de détection d'objet fournissent un outil pour l'étude de toutes les étapes intermédiaires du traitement visuel effectué par le cerveau.Un résultat préliminaire à celui-ci est aussi inclus dans le manuscrit: L'étude de la réponse cérébrale aux textures visuelles et sa modélisation avec les réseaux convolutionnels de scattering.L'autre aspect global de cette thèse sont modèles de “décodage”: Dans la partie précédente, nous prédisions l'activité cérébrale à partir d'un stimulus (modèles dits d’”encodage”). La prédiction du stimulus à partir de l'activité cérébrale est le méchanisme d'inférence inverse et peut servir comme preuve que cette information est présente dans le signal. Le plus souvent, des modèles linéaires généralisés tels que la régression linéaire ou logistique ou les SVM sont utilisés, donnant ainsi accès à une interprétation des coefficients du modèle en tant que carte cérébrale. Leur interprétation visuelle est cependant difficile car le problème linéaire sous-jacent est soit mal posé et mal conditionné ou bien non adéquatement régularisé, résultant en des cartes non-informatives. En supposant une organisation contigüe en espace et parcimonieuse, nous nous appuyons sur la pénalité convexe d'une somme de variation totale et la norme L1 (TV+L1) pour développer une pénalité regroupant un terme d'activation et un terme de dérivée spatiale. Cette pénalité a la propriété de mettre à zéro la plupart des coefficients tout en permettant une variation libre des coefficients dans une zone d'activation, contrairement à TV+L1 qui impose des zones d’activation plates. Cette méthode améliore l'interprétabilité des cartes obtenues dans un schéma de validation croisée basé sur la précision du modèle prédictif.Dans le contexte des modèles d’encodage et décodage nous tâchons à améliorer les prétraitements des données. Nous étudions le comportement du signal IRMf par rapport à la stimulation ponctuelle : la réponse impulsionnelle hémodynamique. Pour générer des cartes d'activation, au lieu d’un modèle linéaire classique qui impose une réponse impulsionnelle canonique fixe, nous utilisons un modèle bilinéaire à réponse hémodynamique variable spatialement mais fixe à travers les événements de stimulation. Nous proposons un algorithme efficace pour l'estimation et montrons un gain en capacité prédictive sur les analyses menées, en encodage et décodage. / Blood-oxygen-level dependent (BOLD) functional magnetic resonance imaging (fMRI) makes it possible to measure brain activity through blood flow to areas with metabolically active neurons. In this thesis we use these measurements to evaluate the capacity of biologically inspired models of vision coming from computer vision to represent image content in a similar way as the human brain. The main vision models used are convolutional networks.Deep neural networks have made unprecedented progress in many fields in recent years. Even strongholds of biological systems such as scene analysis and object detection have been addressed with enormous success. A body of prior work has been able to establish firm links between the first and last layers of deep convolutional nets and brain regions: The first layer and V1 essentially perform edge detection and the last layer as well as inferotemporal cortex permit a linear read-out of object category. In this work we have generalized this correspondence to all intermediate layers of a convolutional net. We found that each layer of a convnet maps to a stage of processing along the ventral stream, following the hierarchy of biological processing: Along the ventral stream we observe a stage-by-stage increase in complexity. Between edge detection and object detection, for the first time we are given a toolbox to study the intermediate processing steps.A preliminary result to this was obtained by studying the response of the visual areas to presentation of visual textures and analysing it using convolutional scattering networks.The other global aspect of this thesis is “decoding” models: In the preceding part, we predicted brain activity from the stimulus presented (this is called “encoding”). Predicting a stimulus from brain activity is the inverse inference mechanism and can be used as an omnibus test for presence of this information in brain signal. Most often generalized linear models such as linear or logistic regression or SVMs are used for this task, giving access to a coefficient vector the same size as a brain sample, which can thus be visualized as a brain map. However, interpretation of these maps is difficult, because the underlying linear system is either ill-defined and ill-conditioned or non-adequately regularized, resulting in non-informative maps. Supposing a sparse and spatially contiguous organization of coefficient maps, we build on the convex penalty consisting of the sum of total variation (TV) seminorm and L1 norm (“TV+L1”) to develop a penalty grouping an activation term with a spatial derivative. This penalty sets most coefficients to zero but permits free smooth variations in active zones, as opposed to TV+L1 which creates flat active zones. This method improves interpretability of brain maps obtained through cross-validation to determine the best hyperparameter.In the context of encoding and decoding models, we also work on improving data preprocessing in order to obtain the best performance. We study the impulse response of the BOLD signal: the hemodynamic response function. To generate activation maps, instead of using a classical linear model with fixed canonical response function, we use a bilinear model with spatially variable hemodynamic response (but fixed across events). We propose an efficient optimization algorithm and show a gain in predictive capacity for encoding and decoding models on different datasets.
Identifer | oai:union.ndltd.org:theses.fr/2015PA112206 |
Date | 21 September 2015 |
Creators | Eickenberg, Michael |
Contributors | Paris 11, Thirion, Bertrand |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image, StillImage |
Page generated in 0.0029 seconds