Return to search

Essays on Fine Structure of Asset Returns, Jumps, and Stochastic Volatility

There has been an on-going debate about choices of the most suitable model amongst a variety of model specifications and parameterizations. The first dissertation essay investigates whether asymmetric leptokurtic return distributions such as Hansen's (1994) skewed tdistribution combined with GARCH specifications can outperform mixed GARCH-jump models such as Maheu and McCurdy's (2004) GARJI model incorporating the autoregressive conditional jump intensity parameterization in the discrete-time framework. I find that the more parsimonious GJR-HT model is superior to mixed GARCH-jump models. Likelihood-ratio (LR) tests, information criteria such as AIC, SC, and HQ and Value-at-Risk (VaR) analysis confirm that GJR-HT is one of the most suitable model specifications which gives us both better fit to the data and parsimony of parameterization. The benefits of estimating GARCH models using asymmetric leptokurtic distributions are more substantial for highly volatile series such as emerging stock markets, which have a higher degree of non-normality. Furthermore, Hansen's skewed t-distribution also provides us with an excellent risk management tool evidenced by VaR analysis. The second dissertation essay provides a variety of empirical evidences to support redundancy of stochastic volatility for SP500 index returns when stochastic volatility is taken into account with infinite activity pure Lévy jumps models and the importance of stochastic volatility to reduce pricing errors for SP500 index options without regard to jumps specifications. This finding is important because recent studies have shown that stochastic volatility in a continuous-time framework provides an excellent fit for financial asset returns when combined with finite-activity Merton's type compound Poisson jump-diffusion models. The second essay also shows that stochastic volatility with jumps (SVJ) and extended variance-gamma with stochastic volatility (EVGSV) models perform almost equally well for option pricing, which strongly imply that the type of Lévy jumps specifications is not important factors to enhance model performances once stochastic volatility is incorporated. In the second essay, I compute option prices via improved Fast Fourier Transform (FFT) algorithm using characteristic functions to match arbitrary log-strike grids with equal intervals with each moneyness and maturity of actual market option prices.

Identiferoai:union.ndltd.org:uno.edu/oai:scholarworks.uno.edu:td-1452
Date22 May 2006
CreatorsYu, Jung-Suk
PublisherScholarWorks@UNO
Source SetsUniversity of New Orleans
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of New Orleans Theses and Dissertations

Page generated in 0.0033 seconds