Return to search

Imagerie de fluorescence et intrinsèque de milieux diffusants par temps d’arrivée des premiers photons

La tomographie optique diffuse (DOT) se caractérise par l’utilisation de la lumière dans un régime de propagation diffusif pour sonder les tissus biologiques. L’utilisation de marqueurs fluorescents permet de cibler des processus biologiques précis (tomographie optique diffuse en fluorescence - FDOT) et d’améliorer le contraste dans les images obtenues. Les applications typiques de la DOT/FDOT sont la mammographie laser, l’imagerie cérébrale de nouveau-nés et les investigations non-invasives sur petits animaux, notamment pour l’imagerie moléculaire. Le présent projet fait partie du programme de recherche TomOptUS dirigé par le professeur Yves Bérubé-Lauzière. Un scanner optique pour petits animaux y est en cours de développement. Ce scanner possède la particularité de fonctionner avec une prise de mesures sans contact dans le domaine temporel.
La première partie du projet a pour point de départ l’algorithme développé en FDOT par Vincent Robichaud qui permet la localisation spatiale d’une seule inclusion fluorescente ponctuelle immergée dans un milieu diffusant homogène ayant une géométrie cylindrique. Une nouvelle approche de localisation pour une pluralité d’inclusions discrètes est ici introduite. Cette dernière exploite l’information contenue dans le temps de vol des premiers photons provenant d’une émission de fluorescence. Chaque mesure permet de définir un lieu géométrique où une inclusion peut se trouver : ces lieux prennent la forme d’ovales en 2D ou d’ovoïdes en 3D. À partir de ces lieux, une carte de probabilité de présence des inclusions est construite : les maxima de la carte correspondent à la position des inclusions. Cette approche géométrique est soutenue par des simulations Monte Carlo en fluorescence dans des milieux reproduisant les propriétés optiques des tissus biologiques. Plusieurs expériences sont ensuite effectuées sur une mire optique homogène répliquant les propriétés optiques des tissus dans lequel des inclusions remplies de vert d’indocyanine (ICG) sont placées. L’approche permet la localisation avec une erreur positionnelle de l’ordre du millimètre. Les résultats démontrent que l’approche est précise, rapide et efficace pour localisation des inclusions fluorescentes dans un milieu hautement diffusant mimant les tissus biologiques. Des simulations Monte Carlo sur un modèle réaliste de souris montrent la faisabilité de la technique pour l’imagerie sur petits animaux.
Le second volet de la thèse s’intéresse aux mesures intrinsèques par le développement d’une approche de reconstruction d’une carte des vitesses de propagation des ondes lumineuses diffuses dans un milieu diffusant hétérogène. De telles vitesses constituent un nouveau contraste pour de l’imagerie DOT. La méthode utilise une configuration en faisceaux lumineux analogue aux méthodes utilisées en tomographie par rayons X. Ici, toutefois, les temps d’arrivée des premiers photons sont utilisés plutôt que l’amplitude du signal. Des résultats sont présentés en 2D pour différentes configurations d’inclusions démontrant la validité de l’approche. Des simulations Monte Carlo sont utilisées pour simuler la propagation intrinsèque dans des milieux hétérogènes et pour venir appuyer la démarche.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QSHERU.7
Date January 2014
CreatorsPichette, Julien
ContributorsBérubé-Lauzière, Yves
PublisherUniversité de Sherbrooke
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageFrench
Detected LanguageFrench
TypeThèse
Rights©JulienPichette, Attribution - Pas d’Utilisation Commerciale - Pas de Modification 2.5 Canada

Page generated in 0.0018 seconds