• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Imagerie de fluorescence et intrinsèque de milieux diffusants par temps d’arrivée des premiers photons

Pichette, Julien January 2014 (has links)
La tomographie optique diffuse (DOT) se caractérise par l’utilisation de la lumière dans un régime de propagation diffusif pour sonder les tissus biologiques. L’utilisation de marqueurs fluorescents permet de cibler des processus biologiques précis (tomographie optique diffuse en fluorescence - FDOT) et d’améliorer le contraste dans les images obtenues. Les applications typiques de la DOT/FDOT sont la mammographie laser, l’imagerie cérébrale de nouveau-nés et les investigations non-invasives sur petits animaux, notamment pour l’imagerie moléculaire. Le présent projet fait partie du programme de recherche TomOptUS dirigé par le professeur Yves Bérubé-Lauzière. Un scanner optique pour petits animaux y est en cours de développement. Ce scanner possède la particularité de fonctionner avec une prise de mesures sans contact dans le domaine temporel. La première partie du projet a pour point de départ l’algorithme développé en FDOT par Vincent Robichaud qui permet la localisation spatiale d’une seule inclusion fluorescente ponctuelle immergée dans un milieu diffusant homogène ayant une géométrie cylindrique. Une nouvelle approche de localisation pour une pluralité d’inclusions discrètes est ici introduite. Cette dernière exploite l’information contenue dans le temps de vol des premiers photons provenant d’une émission de fluorescence. Chaque mesure permet de définir un lieu géométrique où une inclusion peut se trouver : ces lieux prennent la forme d’ovales en 2D ou d’ovoïdes en 3D. À partir de ces lieux, une carte de probabilité de présence des inclusions est construite : les maxima de la carte correspondent à la position des inclusions. Cette approche géométrique est soutenue par des simulations Monte Carlo en fluorescence dans des milieux reproduisant les propriétés optiques des tissus biologiques. Plusieurs expériences sont ensuite effectuées sur une mire optique homogène répliquant les propriétés optiques des tissus dans lequel des inclusions remplies de vert d’indocyanine (ICG) sont placées. L’approche permet la localisation avec une erreur positionnelle de l’ordre du millimètre. Les résultats démontrent que l’approche est précise, rapide et efficace pour localisation des inclusions fluorescentes dans un milieu hautement diffusant mimant les tissus biologiques. Des simulations Monte Carlo sur un modèle réaliste de souris montrent la faisabilité de la technique pour l’imagerie sur petits animaux. Le second volet de la thèse s’intéresse aux mesures intrinsèques par le développement d’une approche de reconstruction d’une carte des vitesses de propagation des ondes lumineuses diffuses dans un milieu diffusant hétérogène. De telles vitesses constituent un nouveau contraste pour de l’imagerie DOT. La méthode utilise une configuration en faisceaux lumineux analogue aux méthodes utilisées en tomographie par rayons X. Ici, toutefois, les temps d’arrivée des premiers photons sont utilisés plutôt que l’amplitude du signal. Des résultats sont présentés en 2D pour différentes configurations d’inclusions démontrant la validité de l’approche. Des simulations Monte Carlo sont utilisées pour simuler la propagation intrinsèque dans des milieux hétérogènes et pour venir appuyer la démarche.
2

Imagerie de fluorescence et intrinsèque de milieux diffusants par temps d’arrivée des premiers photons

Pichette, Julien January 2014 (has links)
La tomographie optique diffuse (DOT) se caractérise par l’utilisation de la lumière dans un régime de propagation diffusif pour sonder les tissus biologiques. L’utilisation de marqueurs fluorescents permet de cibler des processus biologiques précis (tomographie optique diffuse en fluorescence - FDOT) et d’améliorer le contraste dans les images obtenues. Les applications typiques de la DOT/FDOT sont la mammographie laser, l’imagerie cérébrale de nouveau-nés et les investigations non-invasives sur petits animaux, notamment pour l’imagerie moléculaire. Le présent projet fait partie du programme de recherche TomOptUS dirigé par le professeur Yves Bérubé-Lauzière. Un scanner optique pour petits animaux y est en cours de développement. Ce scanner possède la particularité de fonctionner avec une prise de mesures sans contact dans le domaine temporel. La première partie du projet a pour point de départ l’algorithme développé en FDOT par Vincent Robichaud qui permet la localisation spatiale d’une seule inclusion fluorescente ponctuelle immergée dans un milieu diffusant homogène ayant une géométrie cylindrique. Une nouvelle approche de localisation pour une pluralité d’inclusions discrètes est ici introduite. Cette dernière exploite l’information contenue dans le temps de vol des premiers photons provenant d’une émission de fluorescence. Chaque mesure permet de définir un lieu géométrique où une inclusion peut se trouver : ces lieux prennent la forme d’ovales en 2D ou d’ovoïdes en 3D. À partir de ces lieux, une carte de probabilité de présence des inclusions est construite : les maxima de la carte correspondent à la position des inclusions. Cette approche géométrique est soutenue par des simulations Monte Carlo en fluorescence dans des milieux reproduisant les propriétés optiques des tissus biologiques. Plusieurs expériences sont ensuite effectuées sur une mire optique homogène répliquant les propriétés optiques des tissus dans lequel des inclusions remplies de vert d’indocyanine (ICG) sont placées. L’approche permet la localisation avec une erreur positionnelle de l’ordre du millimètre. Les résultats démontrent que l’approche est précise, rapide et efficace pour localisation des inclusions fluorescentes dans un milieu hautement diffusant mimant les tissus biologiques. Des simulations Monte Carlo sur un modèle réaliste de souris montrent la faisabilité de la technique pour l’imagerie sur petits animaux. Le second volet de la thèse s’intéresse aux mesures intrinsèques par le développement d’une approche de reconstruction d’une carte des vitesses de propagation des ondes lumineuses diffuses dans un milieu diffusant hétérogène. De telles vitesses constituent un nouveau contraste pour de l’imagerie DOT. La méthode utilise une configuration en faisceaux lumineux analogue aux méthodes utilisées en tomographie par rayons X. Ici, toutefois, les temps d’arrivée des premiers photons sont utilisés plutôt que l’amplitude du signal. Des résultats sont présentés en 2D pour différentes configurations d’inclusions démontrant la validité de l’approche. Des simulations Monte Carlo sont utilisées pour simuler la propagation intrinsèque dans des milieux hétérogènes et pour venir appuyer la démarche.
3

Modulation de l'activité de structures cérébrales sous-corticales par optogénétique

Castonguay, Alexandre 03 1900 (has links)
L’optogénétique est une technique prometteuse pour la modulation de l’activité neuronale. Par l’insertion d’une opsine microbienne dans la membrane plasmique de neurones et par son activation photonique, il devient possible de réguler l’activité neuronale avec une grande résolution temporelle et spatiale. Beaucoup de travaux ont été faits pour caractériser et synthétiser de nouvelles opsines. Ainsi, plusieurs variétés d’opsines sont désormais disponibles, chacune présentant des cinétiques et sensibilités à des longueurs d’onde différentes. En effet, il existe des constructions optogénétiques permettant de moduler à la hausse ou à la baisse l’activité neuronale, telles la channelrhodopsine-2 (ChR2) ou la halorhodopsine (NpHR), respectivement. Les promesses de cette technologie incluent le potentiel de stimuler une région restreinte du cerveau, et ce, de façon réversible. Toutefois, peu d’applications en ce sens ont été réalisées, cette technique étant limitée par l’absorption et la diffusion de la lumière dans les tissus. Ce mémoire présente la conception d’une fibre optique illuminant à un angle de 90° à sa sortie, capable de guider la lumière à des structures bien précises dans le système nerveux central. Nous avons conduit des tests in vivo dans le système visuel de souris transgéniques exprimant la ChR2 dans l’ensemble du système nerveux central. Dans le système visuel, les signaux rétiniens sont conduits au corps genouillé latéral (CGL) avant d’être relayés au cortex visuel primaire (V1). Pour valider la capacité de mon montage optogénétique à stimuler spécifiquement une sous-population de neurones, nous avons tiré profit de l’organisation rétinotopique existant dans le système visuel. En stimulant optogénétiquement le CGL et en tournant la fibre optique sur elle-même à l’aide d’un moteur, il devient possible de stimuler séquentiellement différentes portions de cette structure thalamique et conséquemment, différentes représentations du champ visuel. L’activation des projections thalamiques sera enregistrée au niveau de l’aire V1 à l’aide de l’imagerie optique intrinsèque, une technique qui permet d’imager les variations de la concentration d’oxygène et du volume sanguin dans le tissu neuronal, sur une grande surface corticale. Comme l’organisation rétinotopique est maintenue au niveau de l’aire V1, l’espace activé au niveau du cortex révèlera l’étendue spatiale de notre stimulation optogénétique du CGL. Les expériences in vivo démontrèrent qu’en déplaçant la fibre optique dans le CGL, il nous était possible de stimuler différents sous- ensembles de neurones dans cette structure thalamique. En conclusion, cette étude montre notre capacité à développer un système à base de fibre optique capable de stimuler optogénétiquement une population de neurone avec une grande précision spatiale. / Optogentics is a promising technic for neuronal activity modulation. By inserting a microbial opsin in the plasma membrane and by its photonic activation, it is possible to regulate neuronal activity with high temporal and spatial resolution. A lot of work has been done to characterize and synthetize new opsins. Thus, a wide variety of opsins are now available, presenting different kinetics and sensibility to specific wavelengths. Indeed, different opsins can either increase or decrease neuronal activity such as channelrhodopsin-2 (ChR2) or halorhodopsin (NpHR), respectively. This technology has the potential to stimulate a specific region within the brain in a highly reversible manner. However, little work was accomplished in this way, because to limitations due to absorption and scattering of light in biological tissue. This master’s thesis presents the conception of a side-firing optical fiber, capable of guiding light to specific structures within the brain. We conducted in vivo experiments in the visual system of transgenic mice expressing ChR2 in the entire central nervous system. In the visual system, retinal inputs are relayed to the lateral geniculate nucleus (LGN) before reaching the primary visual cortex (V1). To validate the capacity of the designed optogenetic assembly to stimulate specific sub-populations of neurons, we took advantage of the retinotopic organization existing in the visual system. By optogenetically stimulating the LGN and rotating the optical fiber around its axis with a motor, it is possible to sequentially stimulate different portions of this thalamic structure and consequently, different portions of the visual field. Activation of thalamic projections will be recorded in area V1 using intrinsic optical imaging, a technic allowing to image variations of blood oxygenation and blood volume in neuronal tissue over large cortical areas. Activation at the level of the cortex will reveal the spatial extent of the optogenetic stimulation in the LGN as retinotopic organization is maintained in V1 cortical area. In vivo experiments showed that displacing the optical fiber in the LGN allowed stimulation of different neuronal populations within this thalamic structure. In conclusion, this study demonstrates our capacity to develop a fiber-based system capable of optogenetically stimulating neuronal tissue with high spatial precision.
4

Optical imaging and two-photon microscopy study of hemodynamic changes contralateral to ictal focus during epileptiform discharges

Truong, Van Tri 04 1900 (has links)
Il est relativement bien établi que les crises focales entraînent une augmentation régionale du flot sanguin dans le but de soutenir la demande énergétique en hémoglobine oxygénée des neurones épileptiques. Des changements hémodynamiques précoces ont également été rapportés dans la région homologue controlatérale, bien que ceci ait été moins bien caractérisé. Dans cette étude, notre objectif est de mieux caractériser, lors de crises focales, la nature des changements hémodynamiques précoces dans la région homologue controlatérale au foyer épileptique. L'imagerie optique intrinsèque (IOI) et la microscopie deux-photons sont utilisées pour étudier les changements hémodynamiques dans la région homologue controlatérale au site de crises focales induites par l’injection de 4-aminopyridine (4-AP) dans le cortex somatosensitif ipsilatéral de souris. Dans l'étude d'IOI, des changements de l’oxyhémoglobine (HbO), de la désoxyhémoglobine (HbR) et du débit sanguin cérébral ont été observées dans la région homologue controlatérale au site de crises focales lors de toutes les crises. Toutefois, ces changements étaient hétérogènes, sans patron cohérent et reproduisible. Nos expériences avec la microscopie deux-photons n’ont pas révélé de changements hémodynamiques significatifs dans la région homotopique controlatérale lors de trains de pointes épileptiques. Nos résultats doivent être interprétés avec prudence compte tenu de plusieurs limitations: d’une part absence de mesures électrophysiologiques dans la région d’intérêt controlatérale au foyer simultanément à l’imagerie deux-photons et à l'IOI; d’autre part, lors des expériences avec le deux-photons, incapacité à générer de longues décharges ictales mais plutôt des trains de pointes, couverture spatiale limitée de la région d’intérêt controlatérale, et faible puissance suite au décès prématuré de plusieurs souris pour diverses raisons techniques. Nous terminons en discutant de divers moyens pour améliorer les expériences futures. / It has been well demonstrated that focal seizures are associated with a significant increase in regional cerebral blood flow to actively supply discharging neurons with oxygenated hemoglobin. There is also some evidence to suggest that focal seizures elicit early hemodynamic changes in the contralateral homotopic area, although this has been less well documented. In this study, we aim to better characterize the nature of early hemodynamic responses contralateral to the epileptic focus during seizures. We used intrinsic optical imaging (IOI) and two-photon laser microscopy to measure the hemodynamic changes in the homotopic contralateral area following focal seizures induced by an injection of 4-aminopyridine (4-AP) in the mouse somatosensory neocortex. In the study using IOI, oxyhemoglobin (HbO), deoxyhemoglobin (HbR) and cerebral blood flow (CBF) changes were observed in the homotopic area contralateral to the focus during all seizures. However, these changes were rather heterogenous, lacking any consistent or reproducible pattern. Our two-photon study showed no significant hemodynamic changes at the capillary level in the homotopic area contralateral to the ictal focus during epileptic spike trains. However, these findings must be interpreted cautiously in light of several limitations we encountered during the experiments. Specifically, we were unable to simultaneously record electrophysiology in the contralateral homotopic area. Furthermore, during our two-photon experiments, we failed to induce long ictal discharges (inducing only spike trains) had a limited sampling of the contralateral homotopic area and reduced power as a result of low mice survival rate. We conclude by providing alternatives to possibly improve future experiments.

Page generated in 0.106 seconds