In this work, our goal is to prove results on prolongation of solutions, uniform boundedness of solutions, uniform stability as well uniform asymptotic stability (in the classical sense of Lyapunov) for measure differential equations and for dynamic equations on time scales. In order to get our results, we employ the theory of generalized ODEs, since these equations encompass measure differential equations and dynamic equations on time scales. Therefore, to get our results, we start by proving the expected result for abstract generalized ODEs. Then, using the correspondence between the solutions of these equations and the solutions of measure differential equations (see [38]), we extend all the results to these the latter. After that, using the correspondence between the solutions of measure differential equations and the solutions of dynamic equations on time scales (see [21]), we extend all the results to these last equations. Finally, we investigate autonomous generalized ODEs and show that these equations do not enlarge the class of classical autonomous ODEs, even when we consider a more general class of functions as right-hand sides. All the new results presented in this work are contained in papers [16, 17, 18, 19]. / Neste trabalho, nosso objetivo e provar resultados sobre prolongamento de soluções, limitação uniforme de soluções, estabilidade uniforme e estabilidade uniforme assintótica (no sentido clássico de Lyapunov) para equações diferenciais em medida e para equações dinâmicas em escalas temporais. A fim de obter os nossos resultados, empregamos a teoria de EDOs generalizadas, uma vez que estas equações abrangem equações diferenciais em medida e equações dinâmicas em escalas temporais. Portanto, para obter nossos resultados, vamos começar por provar, os resultados que queremos para EDOs generalizadas abstratas. Em seguida, usando a correspondência entre as soluções de EDOs generalizadas e soluções de equações diferenciais em medida (ver [38]), estenderemos os resultados para estas ultimas equações. Depois disso, usando a correspondência entre as soluções de equações diferenciais em medida e as soluções de equações dinâmicas em escalas temporais (ver [21]), estenderemos todos os resultados para estas ultimas equações. Finalmente, investigamos EDOs generalizadas autônomas e mostramos que estas equações não aumentam a classe de EDOs autônomas clássicas, mesmo quando consideramos uma classe mais geral de funções nos lados direitos das equações. Os novos resultados encontrados estão contidos em [16, 17, 18, 19].
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-26102016-090644 |
Date | 13 July 2016 |
Creators | Acuña, Rogelio Grau |
Contributors | Federson, Márcia Cristina Anderson Braz, Mesquita, Jaqueline Godoy |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | English |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0027 seconds