The intent of this thesis is to develop ordinary differential equation models to better understand the mosquito population. We first develop a framework model, where we determine the condition under which a natural mosquito population can persist in the environment. Wolbachia is a bacterium which limits the replication of viruses inside the mosquito which it infects. As a result, infecting a mosquito population with Wolbachia can decrease the transmission of viral mosquito-borne diseases, such as dengue. We develop another ODE model to investigate the invasion of Wolbachia in a mosquito population. In a biologically feasible situation, we determine three coexisting equilibria: a stable Wolbachia-free equilibrium, an unstable coexistence equilibrium, and a complete invasion equilibrium. We establish the conditions under which a population of Wolbachia infected mosquitoes may persist in the environment via the next generation number and determine when a natural mosquito population may experience a complete invasion of Wolbachia.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:honorstheses-1331 |
Date | 01 January 2018 |
Creators | Reed, Hanna |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Honors Undergraduate Theses |
Page generated in 0.0019 seconds