Cette thèse porte sur l'analyse d'algorithmes stochastiques et leur application en Finance notamment et est composée de deux parties. Dans la première partie, nous présentons un résultat de convergence pour des algorithmes stochastiques où les innovations vérifient une hypothèse de moyennisation avec une certaine vitesse. Nous l'appliquons ensuite à différents types d'innovations (suites i.i.d., suites à discrépance faible, chaînes de Markov homogènes, fonctionnelles de processus \alpha-mélangeant) et nous l'illustrons à l'aide d'exemples motivés principalement par la Finance. Nous établissons ensuite un résultat de vitesse ''universelle'' de convergence dans le cadre d'innovations équiréparties dans [0,1]^q et nous confrontons nos résultats à ceux obtenus dans le cadre i.i.d.. La seconde partie est consacrée aux applications. Nous présentons d'abord un problème d'allocation optimale appliqué au cas d'un nouveau type de place de trading: les {\em dark pools}. Ces places proposent un prix d'achat (ou de vente) certain, mais n'assurent pas le volume délivré. Le but est alors d'exécuter le maximum de la quantité souhaitée sur ces places. Ceci mène à la construction d'un algorithme stochastique sous contraintes à l'aide du Lagrangien que nous étudions dans les cadres d'innovations i.i.d. et moyennisantes. Le chapitre suivant présente un algorithme d'optimisation pour trouver la meilleure distance de placement d'ordres limites: il s'agit de minimiser le coût d'exécution d'une quantité donnée. Ceci mène à la construction d'un algorithme stochastique sous contraintes avec projection. Pour assurer l'existence et l'unicité de l'équilibre, des critères suffisants sur certains paramètres du modèle sont obtenus à l'aide d'un principe de monotonie opposée pour les diffusions unidimensionnelles. Le chapitre suivant porte sur l'implicitation et la calibration de paramètres dans des modèles financiers. La première technique mène à un algorithme de recherche de zéro et la seconde à une méthode de gradient stochastique. Nous illustrons ces deux techniques par des exemples d'applications sur 3 modèles: le modèle de Black-Scholes, le modèle de Merton et le modèle pseudo-CEV. Enfin le dernier chapitre porte sur l'application des algorithmes stochastiques dans le cadre de modèles d'urnes aléatoires utilisés en essais cliniques. A l'aide des méthodes de l'EDO et de l'EDS, nous retrouvons les résultats de consistance (convergence p.s.) et de normalité asymptotique (TCL) de Bai et Hu mais sous des hypothèses plus faibles sur les matrices génératrices. Nous étudions aussi un modèle ''multi-bras'' pour lequel nous retrouvons le résultat de convergence p.s. et nous montrons un nouveau résultat de normalité asymptotique par simple application du TCL pour les algorithmes stochastiques.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00652128 |
Date | 12 December 2011 |
Creators | Laruelle, Sophie |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0036 seconds