Cette thèse se situe dans le domaine de la combinatoire algébrique et porte sur l'étude et les applications de trois ordres sur les permutations : les deux ordres faibles (gauche et droit) et l'ordre fort ou de Bruhat. Dans un premier temps, nous étudions l'action du groupe symétrique sur les polynômes multivariés. En particulier, les opérateurs de emph{différences divisées} permettent de définir des bases de l'anneau des polynômes qui généralisent les fonctions de Schur aussi bien du point de vue de leur construction que de leur interprétation géométrique. Nous étudions plus particulièrement la base des polynômes de Grothendieck introduite par Lascoux et Schützenberger. Lascoux a montré qu'un certain produit de polynômes peut s'interpréter comme un produit d'opérateurs de différences divisées. En développant ce produit, nous ré-obtenons un résultat de Lenart et Postnikov et prouvons de plus que le produit s'interprète comme une somme sur un intervalle de l'ordre de Bruhat. Nous présentons aussi l'implantation que nous avons réalisée sur Sage des polynômes multivariés. Cette implantation permet de travailler formellement dans différentes bases et d'effecteur des changements de bases. Elle utilise l'action des différences divisées sur les vecteurs d'exposants des polynômes multivariés. Les bases implantées contiennent en particulier les polynômes de Schubert, les polynômes de Grothendieck et les polynômes clés (ou caractères de Demazure).Dans un second temps, nous étudions le emph{treillis de Tamari} sur les arbres binaires. Celui-ci s'obtient comme un quotient de l'ordre faible sur les permutations : à chaque arbre est associé un intervalle de l'ordre faible formé par ses extensions linéaires. Nous montrons qu'un objet plus général, les intervalles-posets, permet de représenter l'ensemble des intervalles du treillis de Tamari. Grâce à ces objets, nous obtenons une formule récursive donnant pour chaque arbre binaire le nombre d'arbres plus petits ou égaux dans le treillis de Tamari. Nous donnons aussi une nouvelle preuve que la fonction génératrice des intervalles de Tamari vérifie une certaine équation fonctionnelle décrite par Chapoton. Enfin, nous généralisons ces résultats aux treillis de $m$-Tamari. Cette famille de treillis introduite par Bergeron et Préville-Ratelle était décrite uniquement sur les chemins. Nous en donnons une interprétation sur une famille d'arbres binaires en bijection avec les arbres $m+1$-aires. Nous utilisons cette description pour généraliser les résultats obtenus dans le cas du treillis de Tamari classique. Ainsi, nous obtenons une formule comptant le nombre d'éléments plus petits ou égaux qu'un élément donné ainsi qu'une nouvelle preuve de l'équation fonctionnelle des intervalles de $m$-Tamari. Pour finir, nous décrivons des structures algébriques $m$ qui généralisent les algèbres de Hopf $FQSym$ et $PBT$ sur les permutations et les arbres binaires
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00952773 |
Date | 07 October 2013 |
Creators | Pons, Viviane |
Publisher | Université Paris-Est |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds