Return to search

Numerical modeling of machine-product interactions in solid and semi-solid manure handling and land application

The general objective of the research effort reported in this thesis was to develop the knowledge required to optimize the design and operation of solid and semi-solid manure handling and land application equipment. Selected physical and rheological properties of manure products deemed to have an influence on the performances of manure handling and land application equipment were measured and general trends were identified among the measured properties. Relationships were also established between the measured properties and the type of manure as well as its total solids concentration. Field experiments were carried out to evaluate the effects of selected mechanical configurations, operating parameters and product properties on the discharge of manure spreaders. The influence of the type of conveying system (scraper conveyor and system of four augers) and the velocity at which it is operated, the geometry of the holding system and the position of a flow-control gate were all included in the analysis. The discharge rates of the machines as well as the specific energy required by the unloading operations were measured. A numerical modeling method called discrete element method (DEM) was used to create virtual manure, a numerical model of the real product. The measured physical and flow properties were used to develop and validate the virtual manure models. It was found that manure products could successfully be represented in a DE framework and that several parameters defining the contact constitutive model in the DEM had an influence on the behaviour of the virtual products. The DEM was then used to study machine-product interactions taking place in handling and land application equipment. Results from field experiments carried out using various land application equipment were used in the development and validation of the interaction models. The predicted flow rates and power requirements were in good agreement with measured data. The results obtained allowed for a better understanding of the flow of manure products in manure handling and land application equipment. It was found that the constitutive model used for the product influenced the results of the machine-product interactions models. A precision banded applicator under development at the University of Saskatchewan was also modeled. The discharge rate of this equipment is influenced by a number of parameters. The predicted mass distribution across the width of the banded applicator was well correlated to the experimental results. The models developed in this thesis have the potential to become powerful engineering tools for the design of improved machines for the handling and land application of solid and semi-solid manure.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-04122005-112246
Date13 April 2005
CreatorsLandry, Hubert
ContributorsWassermann, Jim, Schoenau, Jeffrey J. (Jeff), Roberge, Martin, Maule, Charles P., Laguë, Claude, Crowe, Trever G., Chen, Ying
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-04122005-112246/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0025 seconds