Return to search

Improvements in Genetic Approach to Pole Placement in Linear State Space Systems Through Island Approach PGA with Orthogonal Mutation Vectors

This thesis describes a genetic approach for shaping the dynamic responses of linear state space systems through pole placement. This paper makes further comparisons between this approach and an island approach parallel genetic algorithm (PGA) which incorporates orthogonal mutation vectors to increase sub-population specialization and decrease convergence time.
Both approaches generate a gain vector K. The vector K is used in state feedback for altering the poles of the system so as to meet step response requirements such as settling time and percent overshoot. To obtain the gain vector K by the proposed genetic approaches, a pair of ideal, desired poles is calculate first. Those poles serve as the basis by which an initial population is created. In the island approach, those poles serve as a basis for n populations, where n is the dimension of the necessary K vector.
Each member of the population is tested for its fitness (the degree to which it matches the criteria). A new population is created each “generation” from the results of the previous iteration, until the criteria are met, or a certain number of generations have passed. Several case studies are provided in this paper to illustrate that this new approach is working, and also to compare performance of the two approaches.

Identiferoai:union.ndltd.org:unf.edu/oai:digitalcommons.unf.edu:etd-1304
Date01 January 2012
CreatorsCassell, Arnold
PublisherUNF Digital Commons
Source SetsUniversity of North Florida
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUNF Theses and Dissertations

Page generated in 0.0024 seconds