Return to search

The vertical jump test as a health promotion screening tool for predicting bone strength in young adults

Osteoporosis is one of the most common diseases experienced in the older adult population. This condition is not only costly to manage and treat, particularly so when osteoporotic fractures occur, but also negatively impacts functional health and health-related quality of life for many individuals. This indicates the need for more to be done to prevent osteoporosis from developing initially. While bone mineral density (BMD) testing recommendations are in place for women aged 65 and older and men aged 70 and older to diagnose osteoporosis, there currently are no BMD testing recommendations for preventive or screening purposes in the general, healthy, adult population. One potential screening tool for bone strength is a peak vertical jump test. Peak vertical jump height can be used as a proxy for lower body muscle power, which has been identified as an influential factor in determining bone mass and geometry, both of which are critical aspects of bone strength. This study ascertained the relationship between muscle power and bone strength, as well as the capacity of a peak vertical jump test to identify young adults with below-average areal BMD (aBMD).
A total of 303 young adults (18 to 22 years, n=136 males, n=167 females) participated in these cross-sectional analyses. DXA was used to assess aBMD for total hip and femoral neck, and DXA images were used to calculate femoral neck section modulus (FN Z) values. Peripheral quantitative computed tomography (pQCT) was used to assess indices of bone strength at the tibia. Cortical bone area (CoA) and density-weighted polar section modulus strength-strain index (SSIp) were assessed at the 38% midshaft site, and bone strength index (BSI) was assessed at the 4% midshaft site. Lower body muscle power was predicted using peak vertical jump height and the Sayers et al. (1999) equation. Data were analyzed using Pearson bivariate and partial correlations to examine associations among bone strength outcomes and muscle power. Logistic regression was used to examine the probability of below-average bone strength based on muscle power. Receiver Operating Characteristic (ROC) curve analysis was used to show the tradeoff between sensitivity and specificity and to display the accuracy of a peak vertical jump test as an assessment tool for aBMD. Logistic regression indicated the odds ratio of below-average height-adjusted femoral neck aBMD decreased 5.4% for females and 3.6% for males per 50 Watts of power. ROC curve analysis showed the best sensitivity-specificity trade-off for identifying individuals with and without below-average aBMD was 5,038 Watts in males (sensitivity = 73.7%; specificity = 62.4%; AUC = 0.709, 95%CI = 0.572 - 0.847) and 3,261 Watts in females (sensitivity = 71.4%; specificity = 58.9%; AUC = 0.708, 95%CI = 0.586 - 0.829). These cut off values correspond to a vertical jump height of 54.39 cm and 36.16 cm for males and females, respectively. Taken together, the results of these analyses suggest acceptable sensitivity and specificity and moderate discriminate ability for using a measure of muscle power, assessed with a peak vertical jump test, to identify young adults with below-average aBMD.

Identiferoai:union.ndltd.org:uiowa.edu/oai:ir.uiowa.edu:etd-6462
Date01 May 2016
CreatorsKing, Maggie Marie
ContributorsJanz, Kathleen F.
PublisherUniversity of Iowa
Source SetsUniversity of Iowa
LanguageEnglish
Detected LanguageEnglish
Typethesis
Formatapplication/pdf
SourceTheses and Dissertations
RightsCopyright 2016 Maggie Marie King

Page generated in 0.0022 seconds