Return to search

The Mineral Content of Various Sections of Some Plants as Influenced by Conditions Associated with Lime-Induced Chlorosis

The so-called "lime-induced" chlorosis has been recognized for many years as a problem where plants are grown on calcareous soils. The characteristics associated with lime-induced chlorosis are the same as those associated with iron deficiency chlorosis--interveinal yellowing of the leaves at the meristemic region combined with reduced vigor of the plant as a whole. Lime-induced chlorosis is unique in that the iron content of both chlorotic plant and the soil do not always show a deficiency in iron when chemically analyzed. This leads to the theory that iron is inactivated in both the soil and plant.
Although no single factor has been found to adequately explain this physiological disease, many factors have been associated with it. Thorne, Wann, and Robinson (1950) observed that calcareous soils characterized by fine texture, high moisture content, poor aeration, and cool temperatures intensify the development of chlorosis in plants. In general increased chlorosis has also been noted under conditions of high pH. The pH and phosphorus effects appear to involve reduced iron solubility in the soil and within the plant while the exact effects of the bicarbonate ion on chlorosis have not been established.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-3764
Date01 May 1961
CreatorsVar Petersen, Hyrum Del
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.002 seconds