在處理列聯表時,適合度檢定的結果如果是顯著的話,則意味著配適的模式並不恰當,這其中一個可能的原因是資料中存在離群細格.因此我們希望能夠針對問題癥結所在,找出離群細格,使得我們的資料可以利用一個比較簡單且容易解釋的模式來做分析.在這篇論文中,我們主要依據施苑玉[1995]所提出的方法作些許的改變,使得改進後的方法可以適用於三維列聯表的所有情形.此外我們也將 Simonoff 在1988年所提出的方法,以及 BMDP 統計軟體的程序 4F ,與我們所提出的方法相比較.由模擬實驗的結果可發現我們的方法比前述兩種方法更具可行性. / When fitting a loglinear model to a contingency table, a significant goodness-of-fit can be resulted because of the existence of a few outlyingcells. Since a simpler model is easier to interpret and conveys more easilyunderstood information about a table than a complicated one, we would liketo identify those outliers so that a simpler model would fit a given data set. In this research, a modification of Shih's [1995] procedure is provided, and the revised method is now applicable to any type of models related tothree-way tables. Some data sets are simulated to compare outliers detectedusing procedures proposed by Simonoff [1988], and BMDP program 4F with our proposed method. Based on the results through simulation, our revised procedure outperforms the other two procedures most
of the time.
Identifer | oai:union.ndltd.org:CHENGCHI/B2002002798 |
Creators | 陳佩妘, Chen, Pei-Yun |
Publisher | 國立政治大學 |
Source Sets | National Chengchi University Libraries |
Language | 中文 |
Detected Language | English |
Type | text |
Rights | Copyright © nccu library on behalf of the copyright holders |
Page generated in 0.0013 seconds