Return to search

A 6-degree of freedom input device for interactive virtual environment applications. / 與虛擬環境互動的六自由度輸入裝置 / Six-degree of freedom input device for interactive virtual environment applications / Yu xu ni huan jing hu dong de liu zi you du shu ru zhuang zhi

Ko, Hoi Fung. / "November 2011." / Thesis (M.Phil.)--Chinese University of Hong Kong, 2012. / Includes bibliographical references (p. 121-125). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.iv / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Motivation and Objective --- p.1 / Chapter 1.2 --- Contribution --- p.9 / Chapter 1.3 --- Organization of the Thesis --- p.11 / Chapter 2 --- Background Study --- p.12 / Chapter 2.1 --- Review on 3D Tracking Techniques --- p.13 / Chapter 2.1.1 --- Mechanical base --- p.13 / Chapter 2.1.2 --- Acoustic base --- p.14 / Chapter 2.1.3 --- Magnetic base --- p.15 / Chapter 2.1.4 --- Inertial base --- p.17 / Chapter 2.1.5 --- Optical base --- p.18 / Chapter 2.2 --- Summary --- p.19 / Chapter 3 --- Theory and Methodology --- p.21 / Chapter 3.1 --- Design Framework --- p.21 / Chapter 3.1.1 --- Problem Definition --- p.22 / Chapter 3.1.2 --- Concept --- p.22 / Chapter 3.2 --- Finding the orientation --- p.23 / Chapter 3.2.1 --- Measuring the rotation --- p.23 / Chapter 3.2.2 --- Sensor fusion --- p.26 / Chapter 3.3 --- Finding the translational motion --- p.32 / Chapter 3.3.1 --- Translational motion --- p.32 / Chapter 3.3.2 --- Laser speckle pattern --- p.35 / Chapter 4 --- Implementation --- p.38 / Chapter 4.1 --- Hardware Configuration --- p.38 / Chapter 4.1.1 --- Accelerometer --- p.39 / Chapter 4.1.2 --- Gyroscope --- p.40 / Chapter 4.1.3 --- Digital Compass --- p.41 / Chapter 4.1.4 --- Optical flow chip --- p.42 / Chapter 4.1.5 --- Microcontroller --- p.43 / Chapter 4.2 --- Software Implementation --- p.45 / Chapter 4.2.1 --- On the Microcontroller --- p.45 / Chapter 4.2.2 --- On the PC --- p.47 / Chapter 5 --- Experimental Results --- p.50 / Chapter 5.1 --- Experiments on orientation estimation --- p.50 / Chapter 5.1.1 --- Overall Experimental Setup --- p.51 / Chapter 5.1.2 --- Experiment 1: The improvement of static accuracy by utilising two-axis measurement method --- p.52 / Chapter 5.1.3 --- Experiment 2: The improvement of the dynamic response with Kalman filter and gyroscope --- p.55 / Chapter 5.1.4 --- Experiments 3: The static accuracy of the compass module --- p.59 / Chapter 5.1.5 --- Experiment 4: The dynamic accuracy of the compass module with Kalman filter and gyroscope --- p.63 / Chapter 5.1.6 --- Experiment 5: Kalman filter tuning --- p.64 / Chapter 5.2 --- Experiment on Translational accuracy --- p.67 / Chapter 5.2.1 --- Experiment 6: The relation between the output of the chip and the actual displacement --- p.68 / Chapter 5.2.2 --- Experiment 7: Tracking ability with different materials --- p.70 / Chapter 6 --- The Haptic module --- p.73 / Chapter 6.1 --- Introduction --- p.73 / Chapter 6.2 --- Theory of operation --- p.75 / Chapter 6.3 --- Implementation --- p.77 / Chapter 6.4 --- Experiment and evaluation --- p.80 / Chapter 6.4.1 --- Experiment 1: Calibration of the spring . --- p.80 / Chapter 6.4.2 --- Experiment 2: Latency on force output . . --- p.82 / Chapter 6.5 --- Possible applications --- p.85 / Chapter 7 --- 3D input for immersive display --- p.87 / Chapter 7.1 --- Methodology --- p.88 / Chapter 7.1.1 --- Tracking method --- p.89 / Chapter 7.2 --- Implementation --- p.96 / Chapter 7.2.1 --- Hardware setup --- p.96 / Chapter 7.2.2 --- Software implementation --- p.97 / Chapter 7.2.3 --- Setup Calibration --- p.98 / Chapter 7.2.4 --- Laser Spot Detection --- p.99 / Chapter 7.2.5 --- Pose Estimation --- p.100 / Chapter 7.2.6 --- State Tracking --- p.102 / Chapter 7.3 --- Experiment --- p.105 / Chapter 7.3.1 --- Experiment on translational motion --- p.105 / Chapter 7.3.2 --- Experiment on rotational motion --- p.106 / Chapter 7.3.3 --- Experiment on tracking ability --- p.108 / Chapter 7.4 --- Application --- p.109 / Chapter 8 --- Limitations and Discussions --- p.110 / Chapter 8.1 --- The limitation of the orientation tracking module --- p.110 / Chapter 8.2 --- The limitation of the translational motion tracking module --- p.111 / Chapter 8.3 --- The limitation of the haptic module --- p.112 / Chapter 8.4 --- The limitation of the tracking cube setup --- p.113 / Chapter 8.5 --- Comparison of the result of utilizing simple moving average filter and Kalman filter --- p.114 / Chapter 8.6 --- Comparison with other devices on the market --- p.115 / Chapter 8.7 --- Future work --- p.115 / Chapter 9 --- Conclusion --- p.117 / Bibliography --- p.121

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_327619
Date January 2012
ContributorsKo, Hoi Fung., Chinese University of Hong Kong Graduate School. Division of Computer Science and Engineering.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, [2], xix, 125 p. : ill. (chiefly col.) ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0261 seconds