Nesse trabalho foi abordada a situação em que observações de produtividade da cana-de-açúcar (TCH) foram tomadas na mesma unidade experimental em diferentes condições de avalições (anos). Foram avaliados os perfis médios de resposta de 48 genótipos de cana-de-açúcar em dois experimentos: Experimento 1 e Experimento 2, durante três e cinco anos respectivamente, ambos com o delineamento de blocos ao acaso. Esse tipo de planejamento produz uma forma de relação entre as observações tomadas na mesma unidade experimental, portanto requer outras suposições, além das usuais, para que análise seja correta e os testes produzam resultados válidos. Para que as inferências sobre as médias de produtividade sejam válidas e seguras é necessário que o modelo da matriz de covariância dos dados seja apropriado. Diante disso, foram avalidos três alterantivas de análise para dados longitudinais (medidas repetidas no tempo ), sendo utilizados portanto, o modelo univariado, conforme o planejamento do tipo \"split-plot on time\", que impõe forte restrição quanto a matriz de variâncias-covariâncias; o modelo multivariado, que utiliza uma matriz de variâncias-covariâncias não-estruturada e o modelo mistos, que possibilita a seleção de uma matriz que melhor representa os dados. Contudo, verificou-se que não houve diferença entre os resultados dos testes para as diferentes metodologias. Porém, é interessante a continuidade do estudo em relação ao modelo misto, pois devido a sua flexibilidade e precisão é possível obter estimativas mais seguras dos componentes de variância e predizer os valores genotípicos, que por fim poderá proporcionar a predição de produção de uma futura colheita para um determinado genótipo. / This work has been dealt with situation in which observations of productivity of sugar of cane (TCH) were taken in the same unit experimental in different condition of assessments (years). The response profiles average of 48 genotypes of sugar of cane were evaluated in two experiments: Experiment 1 and Experiment 2, for three and five years respectively, both with the randomized complete block design. This type of planning produces a form of relationship between the observations made in the same unit experimental therefore requires other assumptions, in addition to the usual, so that analysis is correct and the test results valid. To that inferences on the means of productivity are valid and safe it is necessary that the model of covariance matrix of the data is appropriate. Therefore, were evaluated three alternatives for analysis of longitudinal data (repeated measures over time), the univariate model as the planning of the split-plot on time which imposes strong restrictions on variances - covariances matrix, the multivariate model, which uses a non-structured variances - covariances matrix and mixed model, which they are enable the selection of a matrix that best represents the data. However, it was found that there was no difference between the results of tests for the different methodologies. But it is interesting the continuity of the study in relation to mixed model, because due to its flexibility and accuracy will be possible to obtain more reliable estimates of the variance components and predict the genotypic values, which ultimately could provide a prediction of production of a future harvest for a given genotype.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-12062008-151910 |
Date | 25 February 2008 |
Creators | Freitas, Edjane Gonçalves de |
Contributors | Barbin, Decio |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0023 seconds