Spelling suggestions: "subject:"análise dde dados longitudinal"" "subject:"análise dde dados longitudinale""
1 |
Apreçamento de ativos com assimetria e curtose: um teste de comomentos com dados em painel / Asset pricing with skewness and kurtosis: testing co-moments with panel dataCastro Junior, Francisco Henrique Figueiredo de 17 July 2008 (has links)
Ao longo dos anos, desde a concepção do CAPM, o modelo vem passando por um rigoroso escrutínio por parte da comunidade científica e dos agentes de mercado interessados na sua utilização prática. Evidências tanto a favor quanto contra a sua adequação foram surgindo. Várias foram as causas levantadas para o fraco desempenho do CAPM: omissão de variáveis no modelo, variação no tempo da medida de risco (β) ou, ainda, a ausência de outros momentos tais como assimetria e curtose. Esta pesquisa teve como objetivo a investigação empírica da relação entre momentos sistêmicos (covariância, coassimetria e cocurtose) e a taxa de retorno de ativos financeiros negociados no mercado brasileiro. Foi utilizada uma amostra de 179 empresas brasileiras regularmente negociadas na Bovespa entre os anos de 2003 e 2007. Para o teste do modelo de apreçamento, foi utilizado um procedimento em duas etapas. Na primeira, os comomentos de cada ativo foram estimados usando-se dados longitudinais de taxas de retorno. Os coeficientes estimados foram, então, utilizados em uma segunda etapa, na qual uma regressão com dados em painel buscou determinar a relação entre o prêmio pelo risco dos ativos e os comomentos estimados na primeira etapa. Foram estimados modelos com dados agrupados, efeitos aleatórios e efeitos fixos. A determinação do modelo mais adequado foi feita por meio de testes de especificação. Os dados mostraram evidências de que a distribuição de probabilidade das taxas de retorno da maioria das empresas não segue uma distribuição normal, e que tanto a covariância como a cocurtose são fatores de risco relevantes em modelos de apreçamento, mesmo controlados por fatores como: tamanho, alavancagem, liquidez, relação entre preço de mercado e preço contábil e relação entre valor de mercado e valor contábil. / Since the development of the CAPM, the model has been tested with a rigorous scrutiny by academic community and market practitioners who are interested in its practical utilization. Evidence for and against the adequacy of the model has arisen. Various reasons for the failure of the CAPM were raised: omission of variables, time-varying risk factors (β), or the absence of other moments like skewness and kurtosis. This research aimed at empirical investigation of the relationship between systematic moments (covariance, coskewness and cokurtosis) and the rate of return of financial assets traded in the Brazilian market. The sample consisted of 179 stocks regularly traded at Bovespa from 2003 to 2007. The test of the pricing model was run in a two-pass procedure. In the first pass, the comoments for every stock were estimated using a longitudinal series of rates of returns. The estimated coeficients were then used in the second pass, in a panel data regression that intended to establish a relationship between the risk premium and the comoments estimated in the first pass. Panel data models with pooled data, random effects and fixed effects were estimated. The adequacy of each model was tested by specification procedures. Data showed evidence that the rates of return were not normally distributed, and that covariance and cokurtosis were significant risk factors in pricing models, even after controlling for factors like: size, leverage, liquidity, price-earning ratio and
|
2 |
Modelos para a análise de dados de contagens longitudinais com superdispersão: estimação INLA / Models for data analysis of longitudinal counts with overdispersion: INLA estimationRocha, Everton Batista da 04 September 2015 (has links)
Em ensaios clínicos é muito comum a ocorrência de dados longitudinais discretos. Para sua análise é necessário levar em consideração que dados observados na mesma unidade experimental ao longo do tempo possam ser correlacionados. Além dessa correlação inerente aos dados é comum ocorrer o fenômeno de superdispersão (ou sobredispersão), em que, existe uma variabilidade nos dados além daquela captada pelo modelo. Um caso que pode acarretar a superdispersão é o excesso de zeros, podendo também a superdispersão ocorrer em valores não nulos, ou ainda, em ambos os casos. Molenberghs, Verbeke e Demétrio (2007) propuseram uma classe de modelos para acomodar simultaneamente a superdispersão e a correlação em dados de contagens: modelo Poisson, modelo Poisson-gama, modelo Poisson-normal e modelo Poisson-normal-gama (ou modelo combinado). Rizzato (2011) apresentou a abordagem bayesiana para o ajuste desses modelos por meio do Método de Monte Carlo com Cadeias de Markov (MCMC). Este trabalho, para modelar a incerteza relativa aos parâmetros desses modelos, considerou a abordagem bayesiana por meio de um método determinístico para a solução de integrais, INLA (do inglês, Integrated Nested Laplace Approximations). Além dessa classe de modelos, como objetivo, foram propostos outros quatros modelos que também consideram a correlação entre medidas longitudinais e a ocorrência de superdispersão, além da ocorrência de zeros estruturais e não estruturais (amostrais): modelo Poisson inacionado de zeros (ZIP), modelo binomial negativo inacionado de zeros (ZINB), modelo Poisson inacionado de zeros - normal (ZIP-normal) e modelo binomial negativo inacionado de zeros - normal (ZINB-normal). Para ilustrar a metodologia desenvolvida, um conjunto de dados reais referentes à contagens de ataques epilépticos sofridos por pacientes portadores de epilepsia submetidos a dois tratamentos (um placebo e uma nova droga) ao longo de 27 semanas foi considerado. A seleção de modelos foi realizada utilizando-se medidas preditivas baseadas em validação cruzada. Sob essas medidas, o modelo selecionado foi o modelo ZIP-normal, sob o modelo corrente na literatura, modelo combinado. As rotinas computacionais foram implementadas no programa R e são parte deste trabalho. / Discrete and longitudinal structures naturally arise in clinical trial data. Such data are usually correlated, particularly when the observations are made within the same experimental unit over time and, thus, statistical analyses must take this situation into account. Besides this typical correlation, overdispersion is another common phenomenon in discrete data, defined as a greater observed variability than that nominated by the statistical model. The causes of overdispersion are usually related to an excess of observed zeros (zero-ination), or an excess of observed positive specific values or even both. Molenberghs, Verbeke e Demétrio (2007) have developed a class of models that encompasses both overdispersion and correlation in count data: Poisson, Poisson-gama, Poisson-normal, Poissonnormal- gama (combined model) models. A Bayesian approach was presented by Rizzato (2011) to fit these models using the Markov Chain Monte Carlo method (MCMC). In this work, a Bayesian framework was adopted as well and, in order to consider the uncertainty related to the model parameters, the Integrated Nested Laplace Approximations (INLA) method was used. Along with the models considered in Rizzato (2011), another four new models were proposed including longitudinal correlation, overdispersion and zero-ination by structural and random zeros, namely: zero-inated Poisson (ZIP), zero-inated negative binomial (ZINB), zero-inated Poisson-normal (ZIP-normal) and the zero-inated negative binomial-normal (ZINB-normal) models. In order to illustrate the developed methodology, the models were fit to a real dataset, in which the response variable was taken to be the number of epileptic events per week in each individual. These individuals were split into two groups, one taking placebo and the other taking an experimental drug, and they observed up to 27 weeks. The model selection criteria were given by different predictive measures based on cross validation. In this setting, the ZIP-normal model was selected instead the usual model in the literature (combined model). The computational routines were implemented in R language and constitute a part of this work.
|
3 |
Modelos para a análise de dados de contagens longitudinais com superdispersão: estimação INLA / Models for data analysis of longitudinal counts with overdispersion: INLA estimationEverton Batista da Rocha 04 September 2015 (has links)
Em ensaios clínicos é muito comum a ocorrência de dados longitudinais discretos. Para sua análise é necessário levar em consideração que dados observados na mesma unidade experimental ao longo do tempo possam ser correlacionados. Além dessa correlação inerente aos dados é comum ocorrer o fenômeno de superdispersão (ou sobredispersão), em que, existe uma variabilidade nos dados além daquela captada pelo modelo. Um caso que pode acarretar a superdispersão é o excesso de zeros, podendo também a superdispersão ocorrer em valores não nulos, ou ainda, em ambos os casos. Molenberghs, Verbeke e Demétrio (2007) propuseram uma classe de modelos para acomodar simultaneamente a superdispersão e a correlação em dados de contagens: modelo Poisson, modelo Poisson-gama, modelo Poisson-normal e modelo Poisson-normal-gama (ou modelo combinado). Rizzato (2011) apresentou a abordagem bayesiana para o ajuste desses modelos por meio do Método de Monte Carlo com Cadeias de Markov (MCMC). Este trabalho, para modelar a incerteza relativa aos parâmetros desses modelos, considerou a abordagem bayesiana por meio de um método determinístico para a solução de integrais, INLA (do inglês, Integrated Nested Laplace Approximations). Além dessa classe de modelos, como objetivo, foram propostos outros quatros modelos que também consideram a correlação entre medidas longitudinais e a ocorrência de superdispersão, além da ocorrência de zeros estruturais e não estruturais (amostrais): modelo Poisson inacionado de zeros (ZIP), modelo binomial negativo inacionado de zeros (ZINB), modelo Poisson inacionado de zeros - normal (ZIP-normal) e modelo binomial negativo inacionado de zeros - normal (ZINB-normal). Para ilustrar a metodologia desenvolvida, um conjunto de dados reais referentes à contagens de ataques epilépticos sofridos por pacientes portadores de epilepsia submetidos a dois tratamentos (um placebo e uma nova droga) ao longo de 27 semanas foi considerado. A seleção de modelos foi realizada utilizando-se medidas preditivas baseadas em validação cruzada. Sob essas medidas, o modelo selecionado foi o modelo ZIP-normal, sob o modelo corrente na literatura, modelo combinado. As rotinas computacionais foram implementadas no programa R e são parte deste trabalho. / Discrete and longitudinal structures naturally arise in clinical trial data. Such data are usually correlated, particularly when the observations are made within the same experimental unit over time and, thus, statistical analyses must take this situation into account. Besides this typical correlation, overdispersion is another common phenomenon in discrete data, defined as a greater observed variability than that nominated by the statistical model. The causes of overdispersion are usually related to an excess of observed zeros (zero-ination), or an excess of observed positive specific values or even both. Molenberghs, Verbeke e Demétrio (2007) have developed a class of models that encompasses both overdispersion and correlation in count data: Poisson, Poisson-gama, Poisson-normal, Poissonnormal- gama (combined model) models. A Bayesian approach was presented by Rizzato (2011) to fit these models using the Markov Chain Monte Carlo method (MCMC). In this work, a Bayesian framework was adopted as well and, in order to consider the uncertainty related to the model parameters, the Integrated Nested Laplace Approximations (INLA) method was used. Along with the models considered in Rizzato (2011), another four new models were proposed including longitudinal correlation, overdispersion and zero-ination by structural and random zeros, namely: zero-inated Poisson (ZIP), zero-inated negative binomial (ZINB), zero-inated Poisson-normal (ZIP-normal) and the zero-inated negative binomial-normal (ZINB-normal) models. In order to illustrate the developed methodology, the models were fit to a real dataset, in which the response variable was taken to be the number of epileptic events per week in each individual. These individuals were split into two groups, one taking placebo and the other taking an experimental drug, and they observed up to 27 weeks. The model selection criteria were given by different predictive measures based on cross validation. In this setting, the ZIP-normal model was selected instead the usual model in the literature (combined model). The computational routines were implemented in R language and constitute a part of this work.
|
4 |
Apreçamento de ativos com assimetria e curtose: um teste de comomentos com dados em painel / Asset pricing with skewness and kurtosis: testing co-moments with panel dataFrancisco Henrique Figueiredo de Castro Junior 17 July 2008 (has links)
Ao longo dos anos, desde a concepção do CAPM, o modelo vem passando por um rigoroso escrutínio por parte da comunidade científica e dos agentes de mercado interessados na sua utilização prática. Evidências tanto a favor quanto contra a sua adequação foram surgindo. Várias foram as causas levantadas para o fraco desempenho do CAPM: omissão de variáveis no modelo, variação no tempo da medida de risco (β) ou, ainda, a ausência de outros momentos tais como assimetria e curtose. Esta pesquisa teve como objetivo a investigação empírica da relação entre momentos sistêmicos (covariância, coassimetria e cocurtose) e a taxa de retorno de ativos financeiros negociados no mercado brasileiro. Foi utilizada uma amostra de 179 empresas brasileiras regularmente negociadas na Bovespa entre os anos de 2003 e 2007. Para o teste do modelo de apreçamento, foi utilizado um procedimento em duas etapas. Na primeira, os comomentos de cada ativo foram estimados usando-se dados longitudinais de taxas de retorno. Os coeficientes estimados foram, então, utilizados em uma segunda etapa, na qual uma regressão com dados em painel buscou determinar a relação entre o prêmio pelo risco dos ativos e os comomentos estimados na primeira etapa. Foram estimados modelos com dados agrupados, efeitos aleatórios e efeitos fixos. A determinação do modelo mais adequado foi feita por meio de testes de especificação. Os dados mostraram evidências de que a distribuição de probabilidade das taxas de retorno da maioria das empresas não segue uma distribuição normal, e que tanto a covariância como a cocurtose são fatores de risco relevantes em modelos de apreçamento, mesmo controlados por fatores como: tamanho, alavancagem, liquidez, relação entre preço de mercado e preço contábil e relação entre valor de mercado e valor contábil. / Since the development of the CAPM, the model has been tested with a rigorous scrutiny by academic community and market practitioners who are interested in its practical utilization. Evidence for and against the adequacy of the model has arisen. Various reasons for the failure of the CAPM were raised: omission of variables, time-varying risk factors (β), or the absence of other moments like skewness and kurtosis. This research aimed at empirical investigation of the relationship between systematic moments (covariance, coskewness and cokurtosis) and the rate of return of financial assets traded in the Brazilian market. The sample consisted of 179 stocks regularly traded at Bovespa from 2003 to 2007. The test of the pricing model was run in a two-pass procedure. In the first pass, the comoments for every stock were estimated using a longitudinal series of rates of returns. The estimated coeficients were then used in the second pass, in a panel data regression that intended to establish a relationship between the risk premium and the comoments estimated in the first pass. Panel data models with pooled data, random effects and fixed effects were estimated. The adequacy of each model was tested by specification procedures. Data showed evidence that the rates of return were not normally distributed, and that covariance and cokurtosis were significant risk factors in pricing models, even after controlling for factors like: size, leverage, liquidity, price-earning ratio and
|
5 |
Modelos de transição para dados binários / Transition models for binary dataLara, Idemauro Antonio Rodrigues de 31 October 2007 (has links)
Dados binários ou dicotômicos são comuns em muitas áreas das ciências, nas quais, muitas vezes, há interesse em registrar a ocorrência, ou não, de um evento particular. Por outro lado, quando cada unidade amostral é avaliada em mais de uma ocasião no tempo, tem-se dados longitudinais ou medidas repetidas no tempo. é comum também, nesses estudos, se ter uma ou mais variáveis explicativas associadas às variáveis respostas. As variáveis explicativas podem ser dependentes ou independentes do tempo. Na literatura, há técnicas disponíveis para a modelagem e análise desses dados, sendo os modelos disponíveis extensões dos modelos lineares generalizados. O enfoque do presente trabalho é dado aos modelos lineares generalizados de transição para a análise de dados longitudinais envolvendo uma resposta do tipo binária. Esses modelos são baseados em processos estocásticos e o interesse está em modelar as probabilidades de mudanças ou transições de categorias de respostas dos indivíduos no tempo. A suposição mais utilizada nesses processos é a da propriedade markoviana, a qual condiciona a resposta numa dada ocasião ao estado na ocasião anterior. Assim, são revistos os fundamentos para se especificar tais modelos, distinguindo-se os casos estacionário e não-estacionário. O método da máxima verossimilhança é utilizado para o ajuste dos modelos e estimação das probabilidades. Adicionalmente, apresentam-se testes assintóticos para comparar tratamentos, baseados na razão de chances e na diferença das probabilidades de transição. Outra questão explorada é a combinação do modelo de efeitos aleatórios com a do modelo de transição. Os métodos são ilustrados com um exemplo da área da saúde. Para esses dados, o processo é considerado estacionário de ordem dois e o teste proposto sinaliza diferença estatisticamente significativa a favor do tratamento ativo. Apesar de ser uma abordagem inicial dessa metodologia, verifica-se, que os modelos de transição têm notável aplicabilidade e são fontes para estudos e pesquisas futuras. / Binary or dichotomous data are quite common in many fields of Sciences in which there is an interest in registering the occurrence of a particular event. On the other hand, when each sampled unit is evaluated in more than one occasion, we have longitudinal data or repeated measures over time. It is also common, in longitudinal studies, to have explanatory variables associated to response measures, which can be time dependent or independent. In the literature, there are many approaches to modeling and evaluating these data, where the models are extensions of generalized linear models. This work focus on generalized linear transition models suitable for analyzing longitudinal data with binary response. Such models are based on stochastic processes and we aim to model the probabilities of change or transitions of individual response categories in time. The most used assumption in these processes is the Markov property, in which the response in one occasion depends on the immediately preceding response. Thus we review the fundamentals to specify these models, showing the diferences between stationary and non-stationary processes. The maximum likelihood approach is used in order to fit the models and estimate the probabilities. Furthermore, we show asymptotic tests to compare treatments based on odds ratio and on the diferences of transition probabilities. We also present a combination of random-efects model with transition model. The methods are illustrated with health data. For these data, the process is stationary of order two and the suggested test points to a significant statistical diference in favor of the active treatment. This work is an initial approach to transition models, which have high applicability and are great sources for further studies and researches.
|
6 |
Modelos de transição para dados binários / Transition models for binary dataIdemauro Antonio Rodrigues de Lara 31 October 2007 (has links)
Dados binários ou dicotômicos são comuns em muitas áreas das ciências, nas quais, muitas vezes, há interesse em registrar a ocorrência, ou não, de um evento particular. Por outro lado, quando cada unidade amostral é avaliada em mais de uma ocasião no tempo, tem-se dados longitudinais ou medidas repetidas no tempo. é comum também, nesses estudos, se ter uma ou mais variáveis explicativas associadas às variáveis respostas. As variáveis explicativas podem ser dependentes ou independentes do tempo. Na literatura, há técnicas disponíveis para a modelagem e análise desses dados, sendo os modelos disponíveis extensões dos modelos lineares generalizados. O enfoque do presente trabalho é dado aos modelos lineares generalizados de transição para a análise de dados longitudinais envolvendo uma resposta do tipo binária. Esses modelos são baseados em processos estocásticos e o interesse está em modelar as probabilidades de mudanças ou transições de categorias de respostas dos indivíduos no tempo. A suposição mais utilizada nesses processos é a da propriedade markoviana, a qual condiciona a resposta numa dada ocasião ao estado na ocasião anterior. Assim, são revistos os fundamentos para se especificar tais modelos, distinguindo-se os casos estacionário e não-estacionário. O método da máxima verossimilhança é utilizado para o ajuste dos modelos e estimação das probabilidades. Adicionalmente, apresentam-se testes assintóticos para comparar tratamentos, baseados na razão de chances e na diferença das probabilidades de transição. Outra questão explorada é a combinação do modelo de efeitos aleatórios com a do modelo de transição. Os métodos são ilustrados com um exemplo da área da saúde. Para esses dados, o processo é considerado estacionário de ordem dois e o teste proposto sinaliza diferença estatisticamente significativa a favor do tratamento ativo. Apesar de ser uma abordagem inicial dessa metodologia, verifica-se, que os modelos de transição têm notável aplicabilidade e são fontes para estudos e pesquisas futuras. / Binary or dichotomous data are quite common in many fields of Sciences in which there is an interest in registering the occurrence of a particular event. On the other hand, when each sampled unit is evaluated in more than one occasion, we have longitudinal data or repeated measures over time. It is also common, in longitudinal studies, to have explanatory variables associated to response measures, which can be time dependent or independent. In the literature, there are many approaches to modeling and evaluating these data, where the models are extensions of generalized linear models. This work focus on generalized linear transition models suitable for analyzing longitudinal data with binary response. Such models are based on stochastic processes and we aim to model the probabilities of change or transitions of individual response categories in time. The most used assumption in these processes is the Markov property, in which the response in one occasion depends on the immediately preceding response. Thus we review the fundamentals to specify these models, showing the diferences between stationary and non-stationary processes. The maximum likelihood approach is used in order to fit the models and estimate the probabilities. Furthermore, we show asymptotic tests to compare treatments based on odds ratio and on the diferences of transition probabilities. We also present a combination of random-efects model with transition model. The methods are illustrated with health data. For these data, the process is stationary of order two and the suggested test points to a significant statistical diference in favor of the active treatment. This work is an initial approach to transition models, which have high applicability and are great sources for further studies and researches.
|
7 |
Modelos lineares mistos em dados longitudionais com o uso do pacote ASReml-R / Linear Mixed Models with longitudinal data using ASReml-R packageAlcarde, Renata 10 April 2012 (has links)
Grande parte dos experimentos instalados atualmente é planejada para que sejam realizadas observações ao longo do tempo, ou em diferentes profundidades, enfim, tais experimentos geralmente contem um fator longitudinal. Uma maneira de se analisar esse tipo de conjunto de dados é utilizando modelos mistos, por meio da inclusão de fatores de efeito aleatório e, fazendo uso do método da máxima verossimilhança restrita (REML), podem ser estimados os componentes de variância associados a tais fatores com um menor viés. O pacote estatístico ASReml-R, muito eficiente no ajuste de modelos lineares mistos por possuir uma grande variedade de estruturas para as matrizes de variâncias e covariâncias já implementadas, apresenta o inconveniente de nao ter como objetos as matrizes de delineamento X e Z, nem as matrizes de variâncias e covariâncias D e , sendo estas de grande importância para a verificação das pressuposições do modelo. Este trabalho reuniu ferramentas que facilitam e fornecem passos para a construção de modelos baseados na aleatorização, tais como o diagrama de Hasse, o diagrama de aleatorização e a construção de modelos mistos incluindo fatores longitudinais. Sendo o vetor de resíduos condicionais e o vetor de parâmetros de efeitos aleatórios confundidos, ou seja, não independentes, foram obtidos resíduos, denominados na literatura, resíduos com confundimento mínimo e, como proposta deste trabalho foi calculado o EBLUP com confudimento mínimo. Para tanto, foram implementadas funções que, utilizando os objetos de um modelo ajustado com o uso do pacote estatístico ASReml-R, tornam disponíveis as matrizes de interesse e calculam os resíduos com confundimento mínimo e o EBLUP com confundimento m´nimo. Para elucidar as técnicas neste apresentadas e salientar a importância da verificação das pressuposições do modelo adotado, foram considerados dois exemplos contendo fatores longitudinais, sendo o primeiro um experimento simples, visando a comparação da eficiência de diferentes coberturas em instalações avícolas, e o segundo um experimento realizado em três fases, contendo fatores inteiramente confundidos, com o objetivos de avaliar características do papel produzido por diferentes espécies de eucaliptos em diferentes idades. / Currently, most part of the experiments installed is designed to be carried out observations over time or at different depths. These experiments usually have a longitudinal factor. One way of analyzing this data set is by using mixed models through means of inclusion of random effect factors, and it is possible to estimate the variance components associated to such factors with lower bias by using the Restricted maximum likelihood method (REML). The ASRemi-R statistic package, very efficient in fitting mixed linear models because it has a wide variety of structures for the variance - covariance matrices already implemented, presents the disadvantage of having neither the design matricesX and Z, nor the variance - covariance matrices D and , and they are very important to verify the assumption of the model. This paper gathered tools which facilitate and provide steps to build models based on randomization such as the Hasse diagram, randomization diagram and the mixed model formulations including longitudinal factors. Since the conditional residuals and random effect parameters are confounded, that is, not independent, it was calculated residues called in the literature as least confounded residuals and as a proposal of this work, it was calculated the least confound EBLUP. It was implemented functions which using the objects of fitted models with the use of the ASReml-R statistic package becoming available the matrices of interests and calculate the least confounded residuals and the least confounded EBLUP. To elucidate the techniques shown in this paper and highlight the importance of the verification of the adopted models assumptions, it was considered two examples with longitudinal factors. The former example was a simple experiment and the second one conducted in three phases, containing completely confounded factors, with the purpose of evaluating the characteristics of the paper produced by different species of eucalyptus from different ages.
|
8 |
Uma abordagem para análise de dados com medidas repetidas utilizando modelos lineares mistos / One approach to analyzing data with repeated measures using linear mixed modelsBarbosa, Michele 11 September 2009 (has links)
No presente trabalho propôs-se uma abordagem simples visando à escolha de um modelo linear misto a ser ajustado a dados com medidas repetidas. A construção do modelo envolveu a escolha dos efeitos aleatórios, dos efeitos fixos e da estrutura de covariâncias utilizando técnicas gráficas e analíticas. O uso do Teste da Razão de Verossimilhança e dos Critérios de Informação de Akaike - AIC e de Schwarz - BIC pode levar a escolhas diferentes da estrutura de covariâncias, o que pode influenciar os resultados das inferências feitas sobre os parâmetros de efeitos fixos. A abordagem foi aplicada a conjuntos de dados resultantes de estudos agropecuários utilizando o software livre R. Foram feitas comparações dos resultados obtidos de modelos implementados com o proc mixed do SAS e com a função lme() do R, observando as vantagens e restrições destes dois softwares. / In this present work was proposed a simple approach to know how to choose a linear mixed model that can be adjustable to data with repeated measures. The construction of the model involved the choice of random effects, the fixed effects and covariance structure, using graphical and analytical techniques. The use of the Likelihood Ratio Test and the Akaike Information Criteria - AIC and Schwarz - BIC can lead to different choices of the structure of covariance, which may influence the results of inferences made about the parameters of fixed effects. The approach was applied to data sets that was resulted from farming studies using the software R. Comparisons of the results of models implemented were made with the proc mixed of SAS and with the function lme() of R, noting the advantages and limitations of these two softwares.
|
9 |
Modelos lineares generalizados mistos para dados longitudinais. / Generalized linear mixed models in longitudinal data.Costa, Silvano Cesar da 13 March 2003 (has links)
Experimentos cujas variaveis respostas s~ ao proporcoes ou contagens, sao muito comuns nas diversas areas do conhecimento, principalmente na area agricola. Na analise desses experimentos, utiliza-se a teoria de modelos lineares generalizados, bastante difundida (McCullagh & Nelder, 1989; Demetrio, 2001), em que as respostas sao independentes. Caso a variancia estimada seja maior do que a esperada, estima-se o parametro de dispersao, incluindo-o no processo de estimaçao dos parametros. Quando a variavel resposta e observada ao longo do tempo, pode haver uma correlacao entre as observacoes e isso tem que ser levado em consideracao na estimacao dos parametros. Uma forma de se trabalhar essa correlacao e aplicando a metodologia de equacoes de estimacao generalizada (EEG), discutida por Liang & Zeger (1986), embora, neste caso, o interesse esteja nas estimativas dos efeitos fixos e a inclusao da matriz de correlacao de trabalho sirva para se obter um melhor ajuste. Uma outra alternativa e a inclusao, no preditor linear, de um efeito latente para captar variabilidades nao consideradas no modelo e que podem in uenciar nos resultados. No presente trabalho, usa-se uma forma combinada de efeito aleatorio e parametro de dispersao, incluidos conjuntamente na estimacao dos parametros. Essa metodologia e aplicada a um conjunto de dados obtidos de um experimento com camu-camu, com objetivo de se avaliarem quais os melhores metodos de enxertia e tipos de porta-enxertos que podem ser utilizados, atraves da proporcao de pegamentos da muda. Varios modelos sao ajustados, desde o modelo em parcelas subdivididas (supondo independencia), ate o modelo em que se considera o parametro de dispersao e efeito aleatorio conjuntamente. Ha evidencias de que o modelo em que se inclui o efeito aleatorio e o parametro de dispersao, conjuntamente, resultam em melhores estimativas dos parametros. Outro conjunto de dados longitudinais, com milho transgenico MON810, em que a variavel resposta e o numero de lagartas (Spodoptera frugiperda), e utilizado. Neste caso, devido ao excesso de respostas zero, emprega-se o modelo de regressao Poisson in acionado de zeros (ZIP), alem do modelo Poisson padrao, em que as observacoes sao consideradas independentes, e do modelo Poisson in acionado de zeros com efeito aleatorio. Os resultados mostram que o efeito aleatorio incluido no preditor foi nao significativo e, assim, o modelo adotado e o modelo de regressao Poisson in acionado de zeros. Os resultados foram obtidos usando-se os procedimentos NLMIXED, GENMOD e GPLOT do SAS - Statistical Analysis System, versao 8.2. / Experiments which response variables are proportions or counts are very common in several research areas, specially in the area of agriculture. The theory of generalized linear models, well difused (McCullagh & Nelder, 1989; Demetrio, 2001), is used for analyzing these experiments where the responses are independent. If the estimated variance is greater than the expected variance, the dispersion parameter is estimated including it on the parameter estimation process. When the response variable is observed over time a correlation among observations might occur and it should be taken into account in the parameter estimation. A way of dealing with this correlation is applying the methodology of generalized estimating equations (GEEs) discussed by Liang & Zeger (1986) although, in this case, the interest is on the estimates of the xed efect being the inclusion of a working correlation matrix useful to obtain more accurate estimates. Another alternative is the inclusion of a latent efect in the linear predictor to explain variabilities not considered in the model that might in uence the results. In this work the random efect and the dispersion parameter are combined and included together in the parameter estimation. Such methodology is applied to a data set obtained from an experiment realized with camu-camu to evaluate, through proportion of grafting well successful of seedling, which kind of grafting and understock are suitable to be used. Several models are fitted, since the split plot model (with independence assumption) up to the model where the dispersion parameter and the random efect are considered together. There is evidence that the model including the random efect and the dispersion parameter together, produce better estimates of the parameters. Another longitudinal data set used here comes from an experiment realized with the MON810 transgenic corn where the response variable is the number of caterpillars (Spodoptera frugiperda). In this case, due to the excessive number of zeros obtained, the zero in ated Poisson regression model (ZIP) is used in addition to the standard Poisson model, where observations are considered independent, and the zero in ated Poisson regression model with random efect. The results show that the random efect included in the linear predictor was not significant and, therefore, the adopted model is the zero in ated Poisson regression model. The results were obtained using the procedures NLMIXED, GENMOD and GPLOT available on SAS - Statistical Analysis System, version 8.2.
|
10 |
Análise de dados longitudinais em experimentos com cana-de-açúcar / Analysis of longitudinal data in experiments with sugar of caneFreitas, Edjane Gonçalves de 25 February 2008 (has links)
Nesse trabalho foi abordada a situação em que observações de produtividade da cana-de-açúcar (TCH) foram tomadas na mesma unidade experimental em diferentes condições de avalições (anos). Foram avaliados os perfis médios de resposta de 48 genótipos de cana-de-açúcar em dois experimentos: Experimento 1 e Experimento 2, durante três e cinco anos respectivamente, ambos com o delineamento de blocos ao acaso. Esse tipo de planejamento produz uma forma de relação entre as observações tomadas na mesma unidade experimental, portanto requer outras suposições, além das usuais, para que análise seja correta e os testes produzam resultados válidos. Para que as inferências sobre as médias de produtividade sejam válidas e seguras é necessário que o modelo da matriz de covariância dos dados seja apropriado. Diante disso, foram avalidos três alterantivas de análise para dados longitudinais (medidas repetidas no tempo ), sendo utilizados portanto, o modelo univariado, conforme o planejamento do tipo \"split-plot on time\", que impõe forte restrição quanto a matriz de variâncias-covariâncias; o modelo multivariado, que utiliza uma matriz de variâncias-covariâncias não-estruturada e o modelo mistos, que possibilita a seleção de uma matriz que melhor representa os dados. Contudo, verificou-se que não houve diferença entre os resultados dos testes para as diferentes metodologias. Porém, é interessante a continuidade do estudo em relação ao modelo misto, pois devido a sua flexibilidade e precisão é possível obter estimativas mais seguras dos componentes de variância e predizer os valores genotípicos, que por fim poderá proporcionar a predição de produção de uma futura colheita para um determinado genótipo. / This work has been dealt with situation in which observations of productivity of sugar of cane (TCH) were taken in the same unit experimental in different condition of assessments (years). The response profiles average of 48 genotypes of sugar of cane were evaluated in two experiments: Experiment 1 and Experiment 2, for three and five years respectively, both with the randomized complete block design. This type of planning produces a form of relationship between the observations made in the same unit experimental therefore requires other assumptions, in addition to the usual, so that analysis is correct and the test results valid. To that inferences on the means of productivity are valid and safe it is necessary that the model of covariance matrix of the data is appropriate. Therefore, were evaluated three alternatives for analysis of longitudinal data (repeated measures over time), the univariate model as the planning of the split-plot on time which imposes strong restrictions on variances - covariances matrix, the multivariate model, which uses a non-structured variances - covariances matrix and mixed model, which they are enable the selection of a matrix that best represents the data. However, it was found that there was no difference between the results of tests for the different methodologies. But it is interesting the continuity of the study in relation to mixed model, because due to its flexibility and accuracy will be possible to obtain more reliable estimates of the variance components and predict the genotypic values, which ultimately could provide a prediction of production of a future harvest for a given genotype.
|
Page generated in 0.1235 seconds