Spelling suggestions: "subject:"2analysis off longitudinal data"" "subject:"2analysis oof longitudinal data""
1 |
Modelos de transição para dados binários / Transition models for binary dataLara, Idemauro Antonio Rodrigues de 31 October 2007 (has links)
Dados binários ou dicotômicos são comuns em muitas áreas das ciências, nas quais, muitas vezes, há interesse em registrar a ocorrência, ou não, de um evento particular. Por outro lado, quando cada unidade amostral é avaliada em mais de uma ocasião no tempo, tem-se dados longitudinais ou medidas repetidas no tempo. é comum também, nesses estudos, se ter uma ou mais variáveis explicativas associadas às variáveis respostas. As variáveis explicativas podem ser dependentes ou independentes do tempo. Na literatura, há técnicas disponíveis para a modelagem e análise desses dados, sendo os modelos disponíveis extensões dos modelos lineares generalizados. O enfoque do presente trabalho é dado aos modelos lineares generalizados de transição para a análise de dados longitudinais envolvendo uma resposta do tipo binária. Esses modelos são baseados em processos estocásticos e o interesse está em modelar as probabilidades de mudanças ou transições de categorias de respostas dos indivíduos no tempo. A suposição mais utilizada nesses processos é a da propriedade markoviana, a qual condiciona a resposta numa dada ocasião ao estado na ocasião anterior. Assim, são revistos os fundamentos para se especificar tais modelos, distinguindo-se os casos estacionário e não-estacionário. O método da máxima verossimilhança é utilizado para o ajuste dos modelos e estimação das probabilidades. Adicionalmente, apresentam-se testes assintóticos para comparar tratamentos, baseados na razão de chances e na diferença das probabilidades de transição. Outra questão explorada é a combinação do modelo de efeitos aleatórios com a do modelo de transição. Os métodos são ilustrados com um exemplo da área da saúde. Para esses dados, o processo é considerado estacionário de ordem dois e o teste proposto sinaliza diferença estatisticamente significativa a favor do tratamento ativo. Apesar de ser uma abordagem inicial dessa metodologia, verifica-se, que os modelos de transição têm notável aplicabilidade e são fontes para estudos e pesquisas futuras. / Binary or dichotomous data are quite common in many fields of Sciences in which there is an interest in registering the occurrence of a particular event. On the other hand, when each sampled unit is evaluated in more than one occasion, we have longitudinal data or repeated measures over time. It is also common, in longitudinal studies, to have explanatory variables associated to response measures, which can be time dependent or independent. In the literature, there are many approaches to modeling and evaluating these data, where the models are extensions of generalized linear models. This work focus on generalized linear transition models suitable for analyzing longitudinal data with binary response. Such models are based on stochastic processes and we aim to model the probabilities of change or transitions of individual response categories in time. The most used assumption in these processes is the Markov property, in which the response in one occasion depends on the immediately preceding response. Thus we review the fundamentals to specify these models, showing the diferences between stationary and non-stationary processes. The maximum likelihood approach is used in order to fit the models and estimate the probabilities. Furthermore, we show asymptotic tests to compare treatments based on odds ratio and on the diferences of transition probabilities. We also present a combination of random-efects model with transition model. The methods are illustrated with health data. For these data, the process is stationary of order two and the suggested test points to a significant statistical diference in favor of the active treatment. This work is an initial approach to transition models, which have high applicability and are great sources for further studies and researches.
|
2 |
Modelos de transição para dados binários / Transition models for binary dataIdemauro Antonio Rodrigues de Lara 31 October 2007 (has links)
Dados binários ou dicotômicos são comuns em muitas áreas das ciências, nas quais, muitas vezes, há interesse em registrar a ocorrência, ou não, de um evento particular. Por outro lado, quando cada unidade amostral é avaliada em mais de uma ocasião no tempo, tem-se dados longitudinais ou medidas repetidas no tempo. é comum também, nesses estudos, se ter uma ou mais variáveis explicativas associadas às variáveis respostas. As variáveis explicativas podem ser dependentes ou independentes do tempo. Na literatura, há técnicas disponíveis para a modelagem e análise desses dados, sendo os modelos disponíveis extensões dos modelos lineares generalizados. O enfoque do presente trabalho é dado aos modelos lineares generalizados de transição para a análise de dados longitudinais envolvendo uma resposta do tipo binária. Esses modelos são baseados em processos estocásticos e o interesse está em modelar as probabilidades de mudanças ou transições de categorias de respostas dos indivíduos no tempo. A suposição mais utilizada nesses processos é a da propriedade markoviana, a qual condiciona a resposta numa dada ocasião ao estado na ocasião anterior. Assim, são revistos os fundamentos para se especificar tais modelos, distinguindo-se os casos estacionário e não-estacionário. O método da máxima verossimilhança é utilizado para o ajuste dos modelos e estimação das probabilidades. Adicionalmente, apresentam-se testes assintóticos para comparar tratamentos, baseados na razão de chances e na diferença das probabilidades de transição. Outra questão explorada é a combinação do modelo de efeitos aleatórios com a do modelo de transição. Os métodos são ilustrados com um exemplo da área da saúde. Para esses dados, o processo é considerado estacionário de ordem dois e o teste proposto sinaliza diferença estatisticamente significativa a favor do tratamento ativo. Apesar de ser uma abordagem inicial dessa metodologia, verifica-se, que os modelos de transição têm notável aplicabilidade e são fontes para estudos e pesquisas futuras. / Binary or dichotomous data are quite common in many fields of Sciences in which there is an interest in registering the occurrence of a particular event. On the other hand, when each sampled unit is evaluated in more than one occasion, we have longitudinal data or repeated measures over time. It is also common, in longitudinal studies, to have explanatory variables associated to response measures, which can be time dependent or independent. In the literature, there are many approaches to modeling and evaluating these data, where the models are extensions of generalized linear models. This work focus on generalized linear transition models suitable for analyzing longitudinal data with binary response. Such models are based on stochastic processes and we aim to model the probabilities of change or transitions of individual response categories in time. The most used assumption in these processes is the Markov property, in which the response in one occasion depends on the immediately preceding response. Thus we review the fundamentals to specify these models, showing the diferences between stationary and non-stationary processes. The maximum likelihood approach is used in order to fit the models and estimate the probabilities. Furthermore, we show asymptotic tests to compare treatments based on odds ratio and on the diferences of transition probabilities. We also present a combination of random-efects model with transition model. The methods are illustrated with health data. For these data, the process is stationary of order two and the suggested test points to a significant statistical diference in favor of the active treatment. This work is an initial approach to transition models, which have high applicability and are great sources for further studies and researches.
|
3 |
Uma abordagem para análise de dados com medidas repetidas utilizando modelos lineares mistos / One approach to analyzing data with repeated measures using linear mixed modelsBarbosa, Michele 11 September 2009 (has links)
No presente trabalho propôs-se uma abordagem simples visando à escolha de um modelo linear misto a ser ajustado a dados com medidas repetidas. A construção do modelo envolveu a escolha dos efeitos aleatórios, dos efeitos fixos e da estrutura de covariâncias utilizando técnicas gráficas e analíticas. O uso do Teste da Razão de Verossimilhança e dos Critérios de Informação de Akaike - AIC e de Schwarz - BIC pode levar a escolhas diferentes da estrutura de covariâncias, o que pode influenciar os resultados das inferências feitas sobre os parâmetros de efeitos fixos. A abordagem foi aplicada a conjuntos de dados resultantes de estudos agropecuários utilizando o software livre R. Foram feitas comparações dos resultados obtidos de modelos implementados com o proc mixed do SAS e com a função lme() do R, observando as vantagens e restrições destes dois softwares. / In this present work was proposed a simple approach to know how to choose a linear mixed model that can be adjustable to data with repeated measures. The construction of the model involved the choice of random effects, the fixed effects and covariance structure, using graphical and analytical techniques. The use of the Likelihood Ratio Test and the Akaike Information Criteria - AIC and Schwarz - BIC can lead to different choices of the structure of covariance, which may influence the results of inferences made about the parameters of fixed effects. The approach was applied to data sets that was resulted from farming studies using the software R. Comparisons of the results of models implemented were made with the proc mixed of SAS and with the function lme() of R, noting the advantages and limitations of these two softwares.
|
4 |
Uma abordagem para análise de dados com medidas repetidas utilizando modelos lineares mistos / One approach to analyzing data with repeated measures using linear mixed modelsMichele Barbosa 11 September 2009 (has links)
No presente trabalho propôs-se uma abordagem simples visando à escolha de um modelo linear misto a ser ajustado a dados com medidas repetidas. A construção do modelo envolveu a escolha dos efeitos aleatórios, dos efeitos fixos e da estrutura de covariâncias utilizando técnicas gráficas e analíticas. O uso do Teste da Razão de Verossimilhança e dos Critérios de Informação de Akaike - AIC e de Schwarz - BIC pode levar a escolhas diferentes da estrutura de covariâncias, o que pode influenciar os resultados das inferências feitas sobre os parâmetros de efeitos fixos. A abordagem foi aplicada a conjuntos de dados resultantes de estudos agropecuários utilizando o software livre R. Foram feitas comparações dos resultados obtidos de modelos implementados com o proc mixed do SAS e com a função lme() do R, observando as vantagens e restrições destes dois softwares. / In this present work was proposed a simple approach to know how to choose a linear mixed model that can be adjustable to data with repeated measures. The construction of the model involved the choice of random effects, the fixed effects and covariance structure, using graphical and analytical techniques. The use of the Likelihood Ratio Test and the Akaike Information Criteria - AIC and Schwarz - BIC can lead to different choices of the structure of covariance, which may influence the results of inferences made about the parameters of fixed effects. The approach was applied to data sets that was resulted from farming studies using the software R. Comparisons of the results of models implemented were made with the proc mixed of SAS and with the function lme() of R, noting the advantages and limitations of these two softwares.
|
5 |
Curvas de crescimento e produtividade de vacas Nelore e cruzadas, de diferentes tipos biológicos, em sistema de produção intensiva / Curves of growth and productivity of Nellore and cross from different biological types in intensive production systemSilva, Fabiane de Lima 11 February 2010 (has links)
Inicialmente, foram analisados dados peso-idade do nascimento até 100 meses de idade, de vacas de quatro grupos genéticos (G): Nelore (NEL), ½Canchim + ½Nelore (CN), ½Angus + ½Nelore (AN) e ½Simental + ½Nelore (SN), pertencentes a Embrapa Pecuária Sudeste, São Carlos. Os animais considerados neste estudo nasceram de 1998 a 2001 (Ano), na primavera e outono (EP), e foram criados em sistema de produção intensiva, recebendo três níveis de suplementação pós-desmama (M): 0, 1,5; 3,0 kg/animal/dia de concentrado. O objetivo neste estudo foi comparar diferentes modelos não-lineares para estimar o crescimento, e avaliar a influência de efeitos de ambiente e grupo genético sobre os parâmetros estimados. Os modelos não-lineares: Brody, Gompertz, Logístico, Von Bertalanffy e Richards foram ajustados por mínimos quadrados ordinários e ponderados, considerando a variância normal e ponderada pelo inverso dos pesos em diferentes períodos. Foi usado o procedimento NLIN do SAS. Os modelos Brody e Von Bertalanffy convergiram para todos os G, havendo, entretanto, leve superioridade do Brody ponderado. Na comparação do ajuste dos modelos considerando o uso do inverso da variância os modelos mostraram-se mais adequado. As estimativas dos parâmetros peso assintótico (A) e taxa de maturidade (k) do modelo de Brody ponderado foram analisadas por meio de modelo que, além do efeito médio global, incluiu os efeitos de G, M, EP e as interações entre estes efeitos. Houve diferenças significativas das curvas de crescimento médias para os G. Na análise individual dos parâmetros A e k estimados através do modelo Brody ponderado, verificou-se que A foi influenciado (P<0,05) por G e EP e k foi influenciado (P<0,05) por M, fornecidos aos animais durante quatro meses após desmama. Melhorias no manejo alimentar resultaram em menor variação na forma das curvas de crescimentos e em altas taxas de maturidade. Na segunda parte, verificou-se a qualidade do modelo Brody, ponderado pelo inverso das variâncias dos pesos, quanto ao ajuste peso-idade como também a influência das estimativas do peso à maturidade (A) e da taxa de maturidade (k) sobre características produtivas das vacas NEL, CN, AN e SN. Foram organizados 10 grupos contemporâneos (GC), com concatenação dos efeitos Ano-EP-M para cada G. Utilizando-se um modelo misto com efeitos de G e GC, foi incluído, alternadamente covariáveis linear e quadrática de A e k, na análise das características produtivas: peso à desmama dos bezerros (PD); número (ND8) e kg (KD8) de bezerros desmamados em até 8 anos de permanência da vaca no rebanho; relação PD/peso da vaca ao parto (PD_PVP); relação PD/peso da vaca à desmama do bezerro (PD_PVD); relação PD/unidade metabólica da vaca (PV0,75) à desmama do bezerro (PDW). Houve diferença significativa (P<0,05) da curva de crescimento entre os grupos genéticos (G) e também entre os grupos de contemporâneos (GC) dentro de G. Verificou-se que estas características foram, em geral, influenciadas (P<0,01) tanto pelos efeitos linear e quadrático de A quanto pelos efeitos linear e quadrático de k. / Initially, were analyzed weight-age data from birth to 100 months of age from cows of four genetic groups (G): Nellore (NEL), ½Nellore + ½Canchim (CN), ½Angus +½Nellore (AN) and ½Simmental + ½Nellore (SN), of a experiment carried out at Embrapa Southeast Cattle Research Center, State of São Paulo, Brazil. The animals considered in this study were born from 1998 to 2001 (Year) in spring and fall (EP), and were managed in intensive production system and submitted to three of levels of supplementation post-weaning (M): 0, 1.5 and 3.0 kg/animal/day of concentrate. The objective of this study was to compare different nonlinear models to fitted growth curves, of beef cattle females, and to evaluate of environmental and genetic group effects on the estimated parameters. The nonlinear models: Brody, Gompertz, Logistic, Von Bertalanffy and Richards were fitted by ordinary least squares and weighted by the inverse of the variances of the weights in different periods. It was used the NLIN procedure of SAS. The parameters asymptotic weight (A) and maturing rate (k) obtained from model of Brody were analyzed by a mixed linear model that, besides the overall mean effect, included the effects of G, M, EP, and the interactions among these effects. The Brody and Von Bertalanffy models converged for all genetic groups, although slight superiority of the weighted Brody. Comparing the goodness of fit of these models, the use of the inverse of variances showed more efficient than the adjust of the models considering normal variances. Individual analysis of A and k estimated the model weighted Brody, the A parameter was influenced (P <0.05) by genetic group and season of birth and k was influenced (P <0 05) for levels of supplementation to the animals. Improvements in feeding supplementation resulted in less variation in the shape of growth curves and rates of maturity. In the second part of the work, it was evaluated the goodness of the Brody model, weighted by the inverse variance weights, in the adjust of weight-age data, and also analyzed the influence of the maturity weight (A) and maturing rate (k) estimates for traits cows productivity. Were organized 10 contemporary groups (CG) with concatenation of effects Year- EP-M for each G. Considering a mixed model with effects of G and CG (10 contemporaneous groups organized by concatenation Year-EP-M effects), linear and quadratic covariate effects of A and k, were added, alternately, for the analysis of the following traits: weaning weight of calve (WW), number (NW8) and kg (KW8) of calves weaned over 8 years of the cow in the herd; WW/weight of the cow at calving (WW_WC); WW/cow weight at weaning of calf (WW_WWC); and WW/metabolic unit of the cow (PV0,75) at weaning of the calf (MW). There was significant difference (P<0.05) of the growth curve among the genetic groups and also among contemporary groups within G. It was found that the production traits were, in general, influenced (P<0.01) by both linear and quadratic effects of A and k.
|
6 |
Curvas de crescimento e produtividade de vacas Nelore e cruzadas, de diferentes tipos biológicos, em sistema de produção intensiva / Curves of growth and productivity of Nellore and cross from different biological types in intensive production systemFabiane de Lima Silva 11 February 2010 (has links)
Inicialmente, foram analisados dados peso-idade do nascimento até 100 meses de idade, de vacas de quatro grupos genéticos (G): Nelore (NEL), ½Canchim + ½Nelore (CN), ½Angus + ½Nelore (AN) e ½Simental + ½Nelore (SN), pertencentes a Embrapa Pecuária Sudeste, São Carlos. Os animais considerados neste estudo nasceram de 1998 a 2001 (Ano), na primavera e outono (EP), e foram criados em sistema de produção intensiva, recebendo três níveis de suplementação pós-desmama (M): 0, 1,5; 3,0 kg/animal/dia de concentrado. O objetivo neste estudo foi comparar diferentes modelos não-lineares para estimar o crescimento, e avaliar a influência de efeitos de ambiente e grupo genético sobre os parâmetros estimados. Os modelos não-lineares: Brody, Gompertz, Logístico, Von Bertalanffy e Richards foram ajustados por mínimos quadrados ordinários e ponderados, considerando a variância normal e ponderada pelo inverso dos pesos em diferentes períodos. Foi usado o procedimento NLIN do SAS. Os modelos Brody e Von Bertalanffy convergiram para todos os G, havendo, entretanto, leve superioridade do Brody ponderado. Na comparação do ajuste dos modelos considerando o uso do inverso da variância os modelos mostraram-se mais adequado. As estimativas dos parâmetros peso assintótico (A) e taxa de maturidade (k) do modelo de Brody ponderado foram analisadas por meio de modelo que, além do efeito médio global, incluiu os efeitos de G, M, EP e as interações entre estes efeitos. Houve diferenças significativas das curvas de crescimento médias para os G. Na análise individual dos parâmetros A e k estimados através do modelo Brody ponderado, verificou-se que A foi influenciado (P<0,05) por G e EP e k foi influenciado (P<0,05) por M, fornecidos aos animais durante quatro meses após desmama. Melhorias no manejo alimentar resultaram em menor variação na forma das curvas de crescimentos e em altas taxas de maturidade. Na segunda parte, verificou-se a qualidade do modelo Brody, ponderado pelo inverso das variâncias dos pesos, quanto ao ajuste peso-idade como também a influência das estimativas do peso à maturidade (A) e da taxa de maturidade (k) sobre características produtivas das vacas NEL, CN, AN e SN. Foram organizados 10 grupos contemporâneos (GC), com concatenação dos efeitos Ano-EP-M para cada G. Utilizando-se um modelo misto com efeitos de G e GC, foi incluído, alternadamente covariáveis linear e quadrática de A e k, na análise das características produtivas: peso à desmama dos bezerros (PD); número (ND8) e kg (KD8) de bezerros desmamados em até 8 anos de permanência da vaca no rebanho; relação PD/peso da vaca ao parto (PD_PVP); relação PD/peso da vaca à desmama do bezerro (PD_PVD); relação PD/unidade metabólica da vaca (PV0,75) à desmama do bezerro (PDW). Houve diferença significativa (P<0,05) da curva de crescimento entre os grupos genéticos (G) e também entre os grupos de contemporâneos (GC) dentro de G. Verificou-se que estas características foram, em geral, influenciadas (P<0,01) tanto pelos efeitos linear e quadrático de A quanto pelos efeitos linear e quadrático de k. / Initially, were analyzed weight-age data from birth to 100 months of age from cows of four genetic groups (G): Nellore (NEL), ½Nellore + ½Canchim (CN), ½Angus +½Nellore (AN) and ½Simmental + ½Nellore (SN), of a experiment carried out at Embrapa Southeast Cattle Research Center, State of São Paulo, Brazil. The animals considered in this study were born from 1998 to 2001 (Year) in spring and fall (EP), and were managed in intensive production system and submitted to three of levels of supplementation post-weaning (M): 0, 1.5 and 3.0 kg/animal/day of concentrate. The objective of this study was to compare different nonlinear models to fitted growth curves, of beef cattle females, and to evaluate of environmental and genetic group effects on the estimated parameters. The nonlinear models: Brody, Gompertz, Logistic, Von Bertalanffy and Richards were fitted by ordinary least squares and weighted by the inverse of the variances of the weights in different periods. It was used the NLIN procedure of SAS. The parameters asymptotic weight (A) and maturing rate (k) obtained from model of Brody were analyzed by a mixed linear model that, besides the overall mean effect, included the effects of G, M, EP, and the interactions among these effects. The Brody and Von Bertalanffy models converged for all genetic groups, although slight superiority of the weighted Brody. Comparing the goodness of fit of these models, the use of the inverse of variances showed more efficient than the adjust of the models considering normal variances. Individual analysis of A and k estimated the model weighted Brody, the A parameter was influenced (P <0.05) by genetic group and season of birth and k was influenced (P <0 05) for levels of supplementation to the animals. Improvements in feeding supplementation resulted in less variation in the shape of growth curves and rates of maturity. In the second part of the work, it was evaluated the goodness of the Brody model, weighted by the inverse variance weights, in the adjust of weight-age data, and also analyzed the influence of the maturity weight (A) and maturing rate (k) estimates for traits cows productivity. Were organized 10 contemporary groups (CG) with concatenation of effects Year- EP-M for each G. Considering a mixed model with effects of G and CG (10 contemporaneous groups organized by concatenation Year-EP-M effects), linear and quadratic covariate effects of A and k, were added, alternately, for the analysis of the following traits: weaning weight of calve (WW), number (NW8) and kg (KW8) of calves weaned over 8 years of the cow in the herd; WW/weight of the cow at calving (WW_WC); WW/cow weight at weaning of calf (WW_WWC); and WW/metabolic unit of the cow (PV0,75) at weaning of the calf (MW). There was significant difference (P<0.05) of the growth curve among the genetic groups and also among contemporary groups within G. It was found that the production traits were, in general, influenced (P<0.01) by both linear and quadratic effects of A and k.
|
Page generated in 0.1198 seconds