Return to search

The extraordinary sex ratios in the splash pool copepod Tigriopus californicus

Fisher’s adaptive sex ratio theory predicts that organisms should invest equally in sons and daughters and the sex ratio at conception should be 1:1. Hamilton’s theory predicts that organisms should adjust sex ratios based on the relative strength of competition within a mating group. Testing sex ratio and sex allocation theories requires variation in sex ratio. Different sex allocation and sex allocation adjustment mechanisms can produce skewed sex ratios. I used Tigriopus californicus, a harpacticoid copepod with extrabinomial variation in sex ratios, to test sex ratio evolution and socially-mediated sex determination. Using artificially selected sex-biased populations, the trajectory of population sex ratios were as expected under Fisher’s theory and sex ratios approached/reached 0.5 proportion males. Populations with overlapping generations had a slower rate of change towards 0.5 than populations with non-overlapping generations. I show that these data are supported by multiple different models: a mechanistic and simulation model. I tested socially-mediated sex determination using seawater conditioned with different local sex ratios of copepods. There were detectable effects found in both wild populations and isofemale lines. However, these effects may be trivial as differences were small between treatments. Sex determination in T. californicus is a complex mechanism, with multiple genetic and environmental components. The complex nature of sex determination in T. californicus and the dynamic nature of their habitat in highly ephemeral splash pools provide a possible explanation for the non-Fisherian sex ratios we see. / Graduate

Identiferoai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/5616
Date27 August 2014
CreatorsTai, Travis Christopher
ContributorsAnholt, Bradley Ralph
Source SetsUniversity of Victoria
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Rightshttp://creativecommons.org/publicdomain/zero/1.0/, Available to the World Wide Web

Page generated in 0.0017 seconds