Fusarium graminearum causes Fusarium Head Blight, (one of) the most destructive cereal diseases in Canada. Yield loss, quality degradation and mycotoxin production make Fusarium a multifaceted threat. Regulated production of reactive oxygen species by Nox enzymes is indispensable for fungal pathogenesis. F. graminearum Nox mutant ∆noxAB produced equivalent mycotoxin but caused reduced virulence than wild-type. We hypothesized that Nox mediated redox signaling may participate in F. graminearum pathogenicity. Two-DE and gel-free biotin affinity chromatography, followed by LC-MS/MS analysis were employed for a comparative redox-proteomics analysis between wild-type and ∆noxAB to identify proteins oxidized by Nox activity. Total 35 proteins, 10 by 2-DE and 29 by gel-free system, were identified. 34% proteins participated in fungal metabolism, 20% in electron transfer reactions and 9% were anti-oxidant proteins. The findings suggested that Nox mediated thiol-disulfide exchange in proteins provide a switch for redox-dependent regulation of metabolic and developmental processes during induction of FHB.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:MWU.1993/4750 |
Date | 09 August 2011 |
Creators | Joshi, Manisha |
Contributors | Rampitsch, Christof (Biochemistry and Medical Genetics), Wilkins, John (Medicine and Immunology) Gietz, Daniel (Biochemistry and Medical Genetics) |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Detected Language | English |
Page generated in 0.0018 seconds