Return to search

Oxyfuel Carbon Capture for Pulverized Coal: Techno - Economic Model Creations and Evaluation Amongst Alternatives

Today, and for the foreseeable future, coal and other fossil fuels will provide a major portion of the energy services demanded by both developed and developing countries around the word. In order to reduce the emissions of carbon dioxide associated with combustion of coal for electricity generation, a wide range of carbon capture technologies are being developed. This thesis models the oxyfuel carbon capture process for pulverized coal and presents performance and cost estimates of this system in comparison to other low-carbon fossil fuel generators. Detailed process models for oxygen production, flue gas treatment, and carbon dioxide purification have been developed along with the calculation strategies necessary to employ these components in alternative oxyfuel system configurations for different types of coal-fired power plants. These new oxyfuel process models have been implemented in the widely-used Integrated Environmental Control Model (IECM) to facilitate systematic comparisons with other low-carbon options employing fossil fuels. Assumptions about uncertainties in the performance characteristics of gas separation processes and flue gas duct sealing technology, as well as plant utilization and financing parameters, were found to produce a wide range of cost estimates for oxyfuel systems. In case studies of a new 500 MW power plant burning sub-bituminous Powder River Basin coal, the estimated levelized cost of electricity (LCOE) 95% confidence interval (CI) was 86 to 150 [$/MWh] for an oxyfuel system producing a high-purity [99.5 mol% CO2] carbon dioxide product while capturing 90% of the flue gas carbon dioxide. For a CoCapture oxyfuel system capturing 100% of the flue gas CO2 together with all other flue gas constituents, the estimated LCOE 95% CI was 90 to 153 [$/MWh] (all costs in constant 2012 US Dollars). Using the IECM, an oxyfuel system for CO2 capture also was compared under uncertainty to an existing amine-based post-combustion capture system for a new 500 MW power plant, with both systems capturing 90% of the CO2 and producing a high-purity stream for pipeline transport to a geological sequestration site. The resulting distribution for the cost of CO2 avoided showed the oxyfuel-based system had a 95% CI of 44 to 126 [$/tonne CO2] while the amine-based system cost 95% CI ranged from 50 to 133 [$/tonne CO2]. The oxyfuel cost distribution had a longer tail toward more expensive configurations but over 70% of the distribution showed the oxyfuel-based system to be ~10[$/tonne CO2] lower in cost compared to the amine-based capture system. An evaluation of several low-carbon generation options fueled by coal and natural gas further considered both direct and indirect greenhouse gas emissions. This analysis showed oxyfuel to be economically competitive with all capture system considered, and also indicated oxyfuel to be the preferred carbon capture technology for minimizing overall carbon intensity. Combined, these results suggest that oxyfuel is a promising carbon capture technology, and the only one which offers the unique ability to capture all the combustion gases to become a truly zero emission coal plant. Realization of the latter option, however, is contingent on the development of new regulatory policies for underground injection of mixed flue gas streams that is outside the scope of this thesis.

Identiferoai:union.ndltd.org:cmu.edu/oai:repository.cmu.edu:dissertations-1523
Date01 May 2015
CreatorsBorgert, Kyle James
PublisherResearch Showcase @ CMU
Source SetsCarnegie Mellon University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceDissertations

Page generated in 0.0019 seconds