Oxy-fuel combustion technology, which is based on burning coal in a mixture of oxygen and recycled flue gas (RFG), is suggested as one of new promising technologies for capturing CO2 from power plants.
In this thesis study, the pyrolysis and combustion behaviour of various fuels including imported coal, petroleum coke, two different types of indigenous lignites, olive residue and their blends with different proportions in air and oxy-fuel conditions were investigated by using non-isothermal thermogravimetric method (TGA) coupled with Fourier-transform infrared (FTIR) spectrometer.
Pyrolysis tests were carried out in nitrogen and carbon dioxide environments, which are the main diluting gases of air and oxy-fuel environment, respectively. Pyrolysis results reveal that weight loss profiles are similar up to high temperature zone in both pyrolysis environments, indicating that CO2 behaves as an inert gas in this temperature range. However, further weight loss takes place in CO2 atmosphere
v
after 700oC due to CO2-char gasification reaction which is observed in pyrolysis of all fuel samples.
Combustion experiments were carried out in four different atmospheres / air, oxygen-enriched air environment (30 % O2 &ndash / 70 % N2), oxy-fuel environment (21 % O2 &ndash / 79 % CO2) and oxygen-enriched oxy-fuel environment (30 % O2 &ndash / 70 % CO2). Combustion experiments show that replacing nitrogen in the gas mixture by the same concentration of CO2 does not affect the combustion process significantly but leads to slight delay (lower weight loss rate and higher burnout temperature) in combustion. Overall comparison of weight loss profiles shows that higher oxygen content in the combustion environment is the dominant factor affecting the combustion rather than the diluting gas. As O2 concentration increases profiles shift through lower temperature zone, peak and burnout temperatures decrease, weight loss rate increases and complete combustion is achieved at lower temperatures and shorter times.
Pyrolysis and combustion behaviour of three different fuel blends were also investigated. Results reveal synergistic interactions in combustion tests of all blends in all combustion environments.
During pyrolysis and combustion tests gaseous products CO2, CO, H2O, CH4, SO2 and COS were identified in flue gas and analyzed by using FTIR. Results indicate that higher CO and COS formation take place during pyrolysis tests due to gasification reaction in CO2 atmosphere at high temperature zone. Gaseous species evolution trends in combustion tests are found specific for each fuel. However, evolution trends slightly shift to lower temperatures in oxygen-enriched conditions.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12612944/index.pdf |
Date | 01 February 2011 |
Creators | Yuzbasi, Nur Sena |
Contributors | Selcuk, Nevin |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0996 seconds