Polybrominated flame retardants (BFRs), organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were analysed in eggs of various wild bird species from industrialised areas in South Africa. Eggs were collected during the 2008 – 2009 breeding season, homogenised and sent to the Norwegian School of Veterinary Science (NVH) for gas chromatography-mass spectrometry (GC-MS) analysis. The concentration, contamination profile, and risk assessment were conducted for each pollutant class, while effects of species-specific variation, feeding guild, and feeding habitat were investigated.
Levels of BFRs ranged between 2.6 – 44 ng g-1 wet mass (wm). The predominant congeners were BDE-153, -154, - 183 and -47. Results indicated species, in close contact to humans, had higher levels of BFRs, even at lower trophic levels. Therefore, diet was not the primary route of exposure. High concentrations and the occurrence of nona-PBDE congeners and HBCD indicated exposure to current use BFRs. There were measurable levels of OCPs and PCBs in all eggs analysed. Median OCP concentration ranged from 4.2 – 623 ng g-1 wm. DDE was the predominant compound in all species with the exception of the Crowned Lapwing (Vanellus coronatus) where chlordanes were predominant. This may indicate a species-specific attribute in the metabolic efficiency or diet of the genus, since these findings have been reported elsewhere in literature. Congener profiles indicated historic sources of lindane and DDT, while low levels of p,p’-DDT in al species indicate long-range or atmospheric transport. Even though levels of p,p’-DDE were approaching toxicological thresholds, no eggshell thinning was evident. Concentrations of OCPs and PCBs showed an increase with increasing tophic level. PCB concentrations ranged between 0.9 – 296.4 ng g-1 wm. When studying the metabolic potential of PCBs, metabolic groups showed good agreement with the biodegradability of the individual congeners. Phenobarbital-type (PB-type) inducer PCBs were prevalent, indicating the predominance of less toxic PCB congeners. However, non-ortho PCBs were not analysed. These congeners aslo could impact on the toxic potential of PCBs in wild bird eggs.
Principle component analysis (PCA) indicated that variances within datasets could be attributed to congener profiles within species as they were affected by exposure, diet, position in the food web, and association with human activities. Although the individual groups of organohalogens were below no observed effect levels (NOELs), negative effects could occur through interactions of various compounds with each other, as well as the unique exposure profiles of South African bird populations.
To assess the dietary exposure of low-income human populations living close to large industries, the occurrence of organohalogens was investigated in backyard chicken eggs. Levels of dioxins in these eggs were above the European Union (EU) recommended limits, whereas BFRs and OCPs levels were below levels of concern. Nevertheless, areas where DDT is actively applied to dwellings for malaria control should be urgently investigated.
The presence of measureable levels of all the compounds considered, indicate an environment seriously impacted by anthropogenic activity that in the long term could negatively affect both the environment and human health, if it has not already done so. / Thesis (Ph.D. (Environmental Science))--North-West University, Potchefstroom Campus, 2011.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nwu/oai:dspace.nwu.ac.za:10394/4286 |
Date | January 2010 |
Creators | Quinn, Laura Penelope |
Publisher | North-West University |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0019 seconds