Les procédés XTL de production de carburants de synthèse basés sur la réactionFischer-Tropsch ainsi que les centrales IGCC représentent des alternatives attractives à la productiond'énergie future. Ces deux technologies mettent en oeuvre des gaz de synthèse contenant des impuretésdont H2S. Afin de protéger les unités de la corrosion et les catalyseurs Fischer-Tropsch del'empoisonnement, il est nécessaire de désulfurer ce gaz à l'aide d'oxydes métalliques, tel que ZnO, qui sesulfurent de façon quasi irréversible. Cette étape peut engendrer de larges quantités de déchets solides.La régénération in-situ par voie oxydante des matériaux sulfurés a pour but de permettre le retour à laphase oxyde puis à sa réutilisation. C’est une voie prometteuse vers un procédé plus efficient. Cependantla formation de sulfates réfractaires durant la régénération impose une importante élévation de latempérature afin de pouvoir les décomposer. La recherche de solution conduisant à un abaissement de latempérature de régénération est donc nécessaire. Dans ce travail, nous nous sommes proposés d'étudierles phénomènes physico-chimiques mis en jeu lors de la sulfuration et de la régénération d'oxydessimples et composés. Les oxydes simples étudiés ont été sélectionnés à la suite d’une étudethermodynamique puis expérimentale. L’identification des réactivités singulières de ZnO et MoO3 aconduit à la formulation d’oxydes composés. En particulier, l’oxyde mixte ZnMoO4 est régénérable dès500°C. Des caractérisations in-situ ont mis en évidence les rôles de la texture du solide sulfuré et desphases contenant du molybdène dans le processus de régénération. Enfin, une étude réalisée avec unsolide mis et forme et sur banc de perçage a permis d’aboutir à l’élaboration de règles de design dusolide. / Metal oxide based materials are commonly used for the final desulphurization of syngas in IGCC andFisher-Tropsch based XTL processes. The formation of large amount of solid waste is a major issue forthis process. The in-situ oxidative regeneration is a promising way to avoid the waste formation and toenhance process efficiency. However, the formation of refractory metal sulphates during the regenerationprocess requires an increase of the regeneration temperature, in order to decompose the species and toallow the sorbent regeneration. In this work, we have studied the use of composed metal oxides todecrease the regeneration temperature, and the related physic-chemical phenomena involved.Thermochemical and experimental studies on various single oxides outlined the specific reactivity ofZnO and MoO3 phases. Consequently a more thorough study on ZnO and MoO3 composed metal oxideswas performed. In particular, it was shown that ZnMoO4, zinc molybdate phase can be regenerated attemperature as low as 500°C. This low regeneration temperature was explained by the sulphided solidtexture and the oxidation of the molybdenum species. Finally a shaped ZnMoO4 was synthesized andtexted on a lab-scale breakthrough experimental device to validate the concept and give guideline for thedesign of industrial regenerable sorbent.
Identifer | oai:union.ndltd.org:theses.fr/2012LYO10212 |
Date | 29 October 2012 |
Creators | Girard, Vincent |
Contributors | Lyon 1, Geantet, Christophe |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds