Return to search

Low Cr alloys with an improved high temperature corrosion resistance / Alliages à faible teneur en Cr avec une résistance à la corrosion haute température améliorée

Les aciers ferritiques à faible teneur en chrome tel que le T/P91 sont largement utilisés dans les centrales de productions d’électricité pour leurs bonnes propriétés mécaniques et leur faible coefficient d’expansion thermique. Cependant, la demande croissante en énergie alliée à la nécessité de réduire les émissions de gaz à effet de serre, conduisent à envisager l’augmentation des conditions d’utilisation (température et pression) de ces matériaux. Des études ont montré qu’en modifiant la température de fonctionnement et la pression de vapeur d’eau de 538°C/18.5 MPa à 650°C/30 MPa, le rendement des centrales thermiques progressait d’environ 8%. Se pose alors la question de la tenue à la corrosion à haute température des aciers à 9% de chrome. Au cours de ces travaux, le comportement d’un acier ferritique/ martensitique à 9% de chrome a été étudié à 650°C sous air sec et sous vapeur d’eau de matière isotherme et en conditions de cyclage thermique. La prise de masse des échantillons renseigne sur la cinétique de la réaction d’oxydation et l’adhérence des couches d’oxydes formées. Les produits de corrosion ont été caractérisés par plusieurs techniques d’analyses dans l’optique de clairement identifiés les oxydes en présences et leurs mécanismes de formation. Des oxydes mixtes de fer et de chrome (Cr,Fe)2O3 sont dans un premier temps formés et assurent s’avèrent être temporairement protecteur. Pour des longs temps d’oxydation ou des températures supérieures à 650°C, la magnétite Fe3O4 et l’hématite Fe2O3 sont les principaux oxydes formés, montrant ainsi l’inadéquation des nuances à faible teneur en chrome pour une utilisation dans des conditions aussi drastiques. Dans l’optique d’augmenter la résistance à la corrosion à haute température de cet alliage, diverses solutions ont été envisagées tel que l’aluminisation par cémentation en caisse, les revêtements d’oxydes de terre rare par MOCVD, ou encore l’ajout d’éléments d’addition. Ces solutions ont été également testées à 650°C sous air sec et sous vapeur d’eau. / The improvement of high temperature oxidation resistance of low chromium content steels, such as T/P91, is of great interest in regards with their application in thermal power generating plants. Indeed, they possess good creep properties, and low thermal expansion coefficient. Important needs in energy together with environmental issues place power generation plants under constraints which lead to develop high efficiency systems. A usual way to increase the efficiency consists in increasing temperature and pressure parameters of the power generating plant. Studies has shown that the total efficiency of a plant increases by nearly 8 % when changing the steam parameters from 538°C/18.5 MPa to 650°C/30 MPa. Then, the problem of corrosion resistance of 9% chromium steel in those conditions is asked. In this work, the behavior of a ferritic / martensitic 9% chromium steel has been studied at 650°C in dry air and in water vapor containing environment in both isothermal and thermal cyclic conditions. The weight gain of samples provides information on the kinetics of the oxidation reaction and the adhesion of formed oxide scale. Corrosion products were characterized by several analytical techniques in order to identify oxides with accuracy and to understand their formation mechanisms. Mixed iron and chromium oxides (Cr, Fe) 2O3 are initially formed and provide temporary protection to the substrate. For long time exposure or temperatures above 650°C, magnetite, Fe3O4 and hematite Fe2O3 are the main oxides formed, highlighting the fact that low chromium steel are inappropriate for applications in such drastic conditions. In order to increase the high temperature corrosion resistance of this alloy, various solutions have been proposed as aluminizing by pack cementation, reactive element oxides coatings of by MOCVD, or addition of alloying elements in the steel composition. These solutions were then tested at 650 ° C in dry air and in water vapor environments.

Identiferoai:union.ndltd.org:theses.fr/2010DIJOS082
Date07 October 2010
CreatorsEvin, Harold
ContributorsDijon, Chevalier, Sébastien, Föjer, Cécilia
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds