• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 11
  • Tagged with
  • 29
  • 29
  • 29
  • 16
  • 16
  • 15
  • 10
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Catalytic Properties of Protective Metal-Oxides

Hörnlund, Erik January 2003 (has links)
No description available.
2

Catalytic Properties of Protective Metal-Oxides

Hörnlund, Erik January 2003 (has links)
No description available.
3

Vacancy Engineered Doped And Undoped Nanocrystalline Rare Earth Oxide Particles For High Temperature Oxidation Resistant Coating

Thanneeru, Ranjith 01 January 2007 (has links)
Rare earth oxides with trivalent lattice dopants have been of great interest to researchers in the recent years due to its potential applications in catalysis and high temperature protective coatings. The ability to store oxygen in rare earths is the basis for catalysis because of the ability to change valence states which causes the presence of intrinsic oxygen vacancies in the crystal lattice. Although, several doped-rare earth oxide systems in micron scale have been investigated, the doping effect in cerium oxide nanoparticles with well characterized particle size has not been studied. The doping of ceria at that small size can be very beneficial to further improve its catalytic properties and alter the high temperature phases in alloy systems. Cost effective room temperature chemical methods are used in the current work to synthesize uniformly distributed undoped and doped (dopants: La, Nd, Sm, Gd, Y and Yb) rare earth oxide nanoparticles. In the present study, the variation of the properties in nanocrystalline ceria (NC) synthesized by microemulsion method is studied as a function of dopant size and its concentration. To further understand, the role of dopant (cation) size on the oxygen vacancy concentration, doped nanocrystalline oxide powders were analyzed by Raman Spectroscopy, X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS). XRD studies showed that lattice parameter change in nanocrystalline oxide by doping trivalent rare earth elements is largely depending on size of trivalent ions. It showed that by doping larger cations (Gd3+ and Y3+) compare to Ce3+ causes lattice expansion where as smaller cations (Yb3+) leads to lattice contraction. It also showed that the lattice expansion or contraction is directly proportional to dopant concentration. The results of Raman Spectroscopy showed that the correlation length decreases resulting in increase in oxygen vacancies for larger trivalent dopants (Sm3+, Gd3+ and Y3+). However, the correlation length increases resulting in decrease in oxygen vacancies for smaller trivalent dopants (Yb3+) compare to nanocrystalline ceria. These nanostructured oxides are further applied to develop high temperature oxidation resistance coatings for austenitic steels. The present study investigates the role of oxygen vacancies in the performance of high temperature oxidation resistance as a function of various trivalent dopants and dopant concentration. NC and La3+ doped nanocrystalline ceria (LDN) particles were coated on AISI 304 stainless steels (SS) and exposed to 1243K in dry air for longer duration and subjected to cycling. The results are further compared with that of micro-ceria (MC) coatings. The coated samples showed 90% improvement in oxidation resistance compared to uncoated and MC coated steels as seen from the SEM cross-sectional studies. XRD analysis showed the presence of chromia in both NC and 20 LDN samples which is absent in uncoated steels. From SIMS depth profiles, Fe, Ni depletion zones are observed in presence of LDN coated sample indicating diffusion through the oxide layer. The role of oxygen vacancies in the nanoceria coatings on the early formation of protective chromia layer is discussed and compared to its micron counterpart. This study helps in understanding the role of oxygen vacancies to protect austenitic stainless steel at high temperature and confirms the oxygen inward diffusion rather cation outward diffusion in rare earth oxide coatings. It also gives an idea to identify the type of dopant and its concentration in nanocrystalline cerium oxide which supplies the critical oxygen partial pressure required at high temperature to form primarily impervious chromia layer.
4

SmCo for polymer bonded magnets : Corrosion, silanization, rheological, mechanical and magnetic properties

Qadeer, Muhammad Irfan January 2012 (has links)
This thesis presents the study of organofunctional alkoxysilane coatings to prevent high temperature oxidation of Sm-Co powders. Sm-Co are important permanent magnetic alloys, owing to their high Curie temperature and large values of magnetocrystalline anisotropy. They possess stable magnetic properties in the temperature range -40 to 120 °C which makes them very attractive candidates for automobile’s electric motors. However, the environmental conditions for such applications are a sum of high temperatures, humidity, fuels and salts which provide perfect breeding ground for corrosion. In this study we report the high temperature oxidation resistance of Sm2Co17 powders coated with four common commercially available organofunctional silanes; (3-aminopropyl)trimethoxysilane (APTMS), (3-aminopropyl)triethoxysilane (APTES), methyltrimethoxysilane (MTMS) and (3-glycidyloxypropyl)trimethoxysilane (GPTMS). The as received powder was a multimodal mixture of many sizes and shapes which represented a typical ball milling product. The thermal analyses of the powders suggested that the powders without surface coatings had profound affinity towards oxidation. The thermal properties of sieved uncoated powders revealed that the small powders were more susceptible to oxidation than the large powders due to their large specific surface area. The isothermal properties of coated powders revealed that the powders coated with silanes had at least 10 times higher resistance to oxidation as compared to uncoated powders heated at 400 °C for 10 h. The non-isothermal tests conducted from room temperature to 500 °C also revealed that the uncoated powders gained 6 times more mass as compared to the powders coated with an ideal (MTMS) silane. The microstructural analysis of the uncoated powders heated from 400 °C to 550 °C revealed diffusion of oxygen, instable intermetallic phases which resulted in a redistribution of alloying elements, precipitation of alloying elements and formation of a featureless shell (approximately 20 µm in thickness) that surrounded the unreacted core. The coated powders on the other hand showed homogenous distribution of alloying elements, stable intermetallic phases and limited the shell thickness (1 µm). The thermo-magnetic properties of Sm-Co powders showed that the thermal instability also affected the magnetic properties adversely. It was found that the magnetic properties were deteriorated with a decrease in powder size. The energy dispersive spectroscopic (EDS) analyses showed that the small powders contained higher oxygen content than the large powders. Moreover XRD analysis also revealed that the small powders contain higher residual strains and smaller crystallite size which can play their role in deteriorating magnetic properties. It was found that surface modification by silanization improve the thermo-magnetic properties by effectively shielding the powder surfaces from surface oxidation. The rheological properties Sm-Co/PA12 composites revealed that the viscosity of the composites was increased with decreasing powder size due to the presence of rough surfaces and sharp corners in small powders. The rheological properties of the melts containing coated powders revealed that the silane layer acted as a lubricant and decreased the melt viscosity. It was found that coating the powders with silanes not only improve the rheological properties but also improve the other physical properties such as glass transition temperature the loss modulus by modifying the interfacial layer between the polymer matrix (PA12) and the powder. It results in a decrease in viscosity, a broadening of the glass transition temperature and a change in the damping properties of the composites. The dynamic mechanical properties of Sm-Co/PA12 composites showed that the storage modulus was increased with decreasing powder size. The results were expected as the rough surfaces act as local welding points between the powder and the polymer matrix. It was found that the surface modification improve the storage modulus. It is assumed that the silanes modify the interfacial properties which not only resulted in increasing the storage modulus but also broadened the glass transition temperature, Tg and damping, tanδ peaks. From the thermogravimetric, microstructural, rheological and magnetic analyses it can be concluded that the silanes are the effective coatings in preventing high temperature oxidation, stabilizing microstructure, enhancing mechanical properties, and improving rheological and magnetic properties. / <p>QC 20121205</p>
5

Aspects mécaniques de l'oxydation haute température du zirconium : modélisation des champs de contrainte et suivi expérimental multi technique des endommagements / Mechanical aspects of zirconium high temperature oxidation : stress field modeling and experimental multi-technical analysis of damage characterization

Fettré, David 12 January 2017 (has links)
La croissance de la couche d'oxyde en oxydation haute température induit la génération de contraintes dans le système métal/oxyde pouvant être responsable d'un endommagement de ce film d'oxyde lui faisant ainsi perdre son caractère protecteur vis-à-vis du substrat métallique. L'étude se base sur l'essai de déflexion par oxydation monofaciale (DTMO) du système Zr/ZrO2: l'asymétrie de contraintes dans une lame mince créée par la protection d'une de ses faces, génère la courbure de celle-ci du côté de l'oxyde formé, étant sujet à de fortes contraintes de compression internes. Une campagne d'essais servira de référence pour la confrontation avec un modèle semi-analytique de comportement élasto-viscoplastique décrivant l'essai de DTMO en isotherme. Le modèle prend en compte les différentes déformations affectant le système métal/oxyde (notamment le fluage et les déformations chimiques). Les paramètres matériaux identifiés sont ensuite utilisée dans des modèles d'oxydation symétrique qui représentent des cas d'applications réelles pour la détermination des champs de contraintes. Ces prédictions sont confrontées aux observations de la microstructure et à une étude de l'endommagement des couches de zircone. Le phénomène de transition cinétique liée à l'apparition de l'endommagement y est mis en évidence par une analyse expérimentale multi technique. Un suivi par émission acoustique permet d'identifier des classes de signaux liées aux différents régimes de la cinétique d'oxydation du zirconium et deux tendances à la transition cinétique sont observées en thermogravimétrie et sont différenciées par la suite par des comportements différents à l'écaillage. / The oxide scale growth in high temperature oxidation leads to generation of stresses in the oxide/metal system. It could be responsible of the damage of this oxide film causing the loss of its protective character toward the metallic substrate. The study is based on the Deflection Test in Monofacial Oxidation (DTMO) of Zr/ZrO2 system: the protection of one face of a thin foil creates a stress asymmetry. It leads to the sample curvature on the oxide scale side due to internal high compressive stresses on it. A test campaign is held as a reference for a comparison with an elasto-viscoplastic semi-analytical model describing the DTMO in isotherm. This model considers the different deformations affecting the metal/oxide system (notably creep and chemical deformations). The identified material parameters are then used in symmetric oxidation models which represent real application cases for stress field determination. These predictions are confronted to microstructure observations and to an analysis of the damage in zirconia scale. The breakaway phenomenon linked to damage initiation in the oxide scale is highlighted with an experimental multi-technical analysis. With an acoustic emission monitoring, we identify clusters of signals linked to the different oxidation kinetics regimes and with thermogravimertry, two tendencies at breakaway are observed and are differentiated afterward with different behaviours at spalling.
6

Fused metallic slurry coatings for improving the oxidation resistance of wrought alloys

Segura-Cedillo, Ismael January 2011 (has links)
The aim of this project was to investigate the potential of fused-slurry coatings for improving the oxidation resistance of wrought alloys. Slurry-aluminised coatings were deposited on Alloy 800H (Fe-33Ni-20Cr), Alloy HCM12A (Fe-12Cr-2W), Alloy 214 (Ni-16Cr-4Al-3Fe), Fe-27Cr-4Al and Fe-14Cr-4Al alloys. The slurry contained a cellulose-based binder in an aqueous carrier and spherical aluminium powder, with a particle size below 20 microns. The slurries were applied with a paint-brush, dried in air and heat treated in either hydrogen or argon at temperatures between 700 and 1150C. The slurries were characterised by thermogravimetry, differential scanning calorimetry and viscometry. The coatings were characterised by optical microscopy, scanning electron microscopy, energy-dispersive X-ray analysis, X-ray diffraction and Vickers hardness measurements. The oxidation resistance of selected slurry-coated specimens was assessed in air at 1000 and 1100C in tests lasting up to 1000 hours.Slurry-aluminising was found to be a simple, effective way of forming protective coatings that were similar in composition and microstructure to chemical vapour deposits. However, it was difficult to control the amount of slurry applied to the substrate and produce coatings of uniform thickness.The coatings on Alloy HCM12A and the Fe-Cr-Al alloys contained cracks in the brittle FeAl phase due to tensile stresses arising from differences in the thermal expansion coefficients of the substrates and the coatings. Rapid interdiffusion between the coatings and the ferritic substrates resulted in the appearance of Kirkendall voids.Coatings on Alloy 214 required a two-stage heat treatment to convert the brittle δ-Ni2Al3 to β-NiAl. Cracking along the coating/substrate interface was prevented by limiting the coating thickness to a maximum of 250 microns. During oxidation at 1100C, the β-NiAl was converted to γ'-Ni3Al. After 1000 h, the centre of the coating consisted chiefly of γ'-Ni3Al and bands of austenite (γ-Ni) were present at the inner and outer edges of the coating. The aluminium content at the coated surface was higher than the original aluminium content of the alloy, the protective alumina scale was improved and the oxidation life of the substrate was extended. An additional life of 1250 h at 1100C is estimated from a slurry coating before the aluminium content returns to that of the original alloy (4%), providing a potential improvement in oxidation resistance.Microstructural changes such as grain growth, sensitisation and formation of aluminium nitride particles near the coating/substrate interface, were detected in the alloy substrates after forming the slurry coatings. However, these microstructural changes did not detract from the good performance of the coatings during oxidation tests at 1100C.The work in this study has demonstrated a low-cost method of coating high-temperature alloys providing coatings with microstructures, densities and modes of degradation similar to those obtained by other coating methods. The coatings are potentially applicable to a wide range of high-temperature substrates.
7

Slurry coatings from aluminium microparticles on Ni-based superalloys for high temperature oxidation protection

Rannou, Benoît 20 November 2012 (has links) (PDF)
Because of their good mechanical resistance at high temperature, Ni-based superalloys are used for aero-engine and land-based turbines but undergo "dry" oxidation between 900 and 1500°C. These materials are thus coated with nickel-aluminide coatings (BC). An additional thermal barrier coating (TBC) is generally applied in the hottest sections of the turbines (T>1050°C) to lower the impact of the temperature on the substrate. In the framework of the European research programme "PARTICOAT", this PhD work was focused on the growth mechanisms of a full protective coating system (BC+TBC) in a single step process, using a water-based slurry containing a dispersion of Al micro-particles to satisfy the European environmental directives. The rheological and physico-chemical characterizations showed the slurry stability up to seven days. After depositing the latter by air spraying, a tailored thermal treatment resulted in a nickel-aluminide coating (β-NiAl) similar to the conventional industrial ones but through an intermediate Al liquid phase stage. Simultaneously, the oxidation of the Al micro-particles brought aboutthe formation of a top alumina "foam" (PARTICOAT concept). After a validation step of the mechanisms involved in pure Ni substrate, the extrapolation of the process to several Ni-based superalloys (René N5 (SX), CM-247 (DS), PWA- 1483 (SX) and IN-738LC (EQ)) revealed different coating compositions and microstructures. A particular attention was therefore paid onto the effect of alloying elements (Cr, Ta, Ti) as well as their segregation in the coating. The high temperature behaviour of the coated samples has been studied through isothermal oxidation (1000h in air between 900 and 1100°C) and showed that the oxidation and interdiffusion phenomena ruled the degradation mechanisms. Besides, the electrodeposition of ceria before the application of the PARTICOAT coating allowed to strongly limit interdiffusion phenomena and stabilized the nickel aluminide coating.
8

Comportement vis-à-vis de la corrosion à haute température de métaux (Ti, TA6V) revêtus d'aluminiure de titane / Behaviour of the high temperature corrosion of metals (TiAl3) coated with titanium aluminide

Gateau, Romain 10 December 2010 (has links)
Au cours de ce travail, des revêtements intermétalliques TiAlx (x=1,2,3) ont été élaborés sur des substrats à base titane : le titane pur et l’alliage commercial, TA6V. L’objectif était de réaliser des revêtements d’aluminiure en surface et d’étudier le comportement des matériaux revêtus vis-à-vis de l’oxydation à haute température sous air, sous air enrichi en vapeur d’eau et en présence de soufre. Les matériaux revêtus ont été testés à trois températures : 700°C, 800°C et 900°C. Les revêtements ont été réalisés à 1000°C par la méthode de cémentation en caisse. Les revêtements réalisés par ce procédé sont toujours adhérents au substrat. Pendant la réaction d’oxydation, l’existence d’un processus de rétrodiffusion de l’aluminium modifie la nature des phases et l’organisation du revêtement. Les phases TiAl et TiAl2 ne sont pas suffisamment riches en aluminium pour promouvoir la formation d’une couche d’alumine protectrice quelle que soit la température d’oxydation. Lorsque ce sont ces phases qui sont à la surface du revêtement, on assiste toujours à la formation d’une couche superficielle de rutile TiO2. Quand elle constitue la sous-couche externe du revêtement, la phase TiAl3 est assez riche en aluminium pour former une couche d’alumine -Al2O3 couvrante, compacte et protectrice. / During this study, intermetallic coatings TiAlx (x=1,2,3) were performed on titanium substrates: pure titanium and the commercial alloy, TA6V. The aim of this study was to elaborate aluminiure coatings on the surface and characterize the behaviour of these coated materials in oxidation at high temperature under air laboratory, under air enriched with water vapour and with sulfur. The coated materials were tested at three temperatures: 700°C, 800°C and 900°C. The coatings were realized at 1000°C by the pack-cementation process. The coatings realized are always adherent to the substrate. During oxidation the retrodiffusion of aluminium changes the nature of the phases and the organisation of the coating. TiAl and TiAl2 phases are not enough rich in aluminium to promote the formation of a protective alumina layer, whatever the temperature. When these phases are present on the surface of the coating, we always observe the formation of a TiO2 rutile top layer. When TiAl3 is the external sub-layer of the coating, this phase is rich enough in aluminium to form an -Al2O3 alumina layer, which is covering, compact and protective.
9

Mécanismes de dégradation de revêtements base CrN élaborés par arc-PVD : Intérêt d'une nano-architecture

Schmitt, Thomas 13 December 2010 (has links)
Les enjeux environnementaux liés à l'utilisation des fluides de coupe lors des étapes d'usinage, nécessitent le développementde nouveaux matériaux résistant à une utilisation en lubrification réduite, voire à sec. Le domaine des revêtements en couchesminces et plus particulièrement des dépôts physiques en phase vapeur (PVD) permet de synthétiser des surfaces adaptées à cetype d'utilisation sévère. Le nitrure de titane (TiN), largement utilisé dans l'industrie, montre toute l'efficacité de cesrevêtements. Ses performances sont cependant limitées à des températures modérées. Au contraire, le caractère réfractairemarqué du nitrure de chrome (CrN) en fait un candidat de choix pour des applications à hautes températures. Les propriétésmécaniques de ces nitrures sont certes moindres, mais le développement récent de microstructures nanométriques laisseaugurer des performances intéressantes que nous nous proposons d'étudier. L'objectif de ce travail est de déterminer l'influenced'une microstructure contrôlée à l'échelle nanométrique sur la durabilité de films minces base CrN, synthétisés par évaporationpar arc cathodique. Les différentes microstructures sont obtenues par modification chimique (addition d'aluminium et desilicium) ou par alternance des couches.L'ajout d'aluminium à CrN aboutit à la formation d'une solution solide et améliore les propriétés mécaniques du revêtement.La résistance à l'oxydation est augmentée par la présence de liaisons fortes Al-N, qui permettent de limiter le départ d'azote etainsi de retarder le phénomène d'oxydation. De plus, la démixtion de la phase initiale CrAlN en deux phases distinctes, CrN etAlN, tend à isoler les grains de CrN et ainsi à améliorer leur stabilité thermique. La même transformation est observée aprèsles essais de frottement et semble à l'origine des performances accrues du dépôt vis-à-vis de l'usure. L'addition de silicium setraduit par la synthèse d'un revêtement nanocomposite pour une teneur minimale d'environ 2 % at. Cette structure est forméede grains nanométriques enrobés dans une matrice amorphe. Le changement de structure s'accompagne d'une meilleurerésistance à l'oxydation, en raison des propriétés de barrière diffusionnelle de la matrice qui protège les nano-grains de CrN.En revanche, une fraction volumique trop importante de la phase amorphe apparaît préjudiciable au comportementtribologique. Le revêtement présente dans ce cas un comportement fragile, favorisant la formation et la propagation defissures. L'emploi de ces mêmes films (CrN et CrSiN) en architecture nanostratifiée inhibe néanmoins ce comportement. Desessais de micro-traction montrent que l'alternance des couches permet de limiter la formation de fissures, si bien quel'architecture multicouche semble prometteuse dans le cas de sollicitations sévères. De même, la stratification de CrN etCrAlN donne des revêtements extrêmement durables, malgré des propriétés mécaniques intermédiaires régies par une loi desmélanges.L’originalité de ce travail réside dans la détermination des mécanismes de dégradation des différentes microstructures, d’unepart en établissant le lien entre microstructure et propriétés d’usage, et d’autre part en considérant ces dégradation selon uneapproche in situ locale. / Environmental issues related to the use of metalworking fluids during machining steps require the development of newresistant materials operating in “Near Dry Machining” or in “Dry Machining” conditions. The field of thin coatings and moreparticularly Physical Vapor Deposition (PVD) enable the synthesis of resistant materials. Titanium nitride (TiN) is widely usedin industry and is an example of the efficiency of coatings. However, the poor oxidation resistance of this coating limits itsuse. On the contrary, chromium nitride (CrN) is an excellent candidate for applications at high temperatures despite its lowermechanical properties. The recent development of nanostructured coatings can overcome such inconvenience. The objectiveof this work is to study the influence of a controlled nanoscale microstructure on the durability of CrN thin films synthesizedby cathodic arc evaporation. The different microstructures are obtained by silicon or aluminum addition, or by alternatinglayers (multilayer structure).Adding aluminium to CrN leads to the formation of a solid solution and improves the mechanical properties of the coating.Resistance to oxidation is increased by the strong Al-N bonds, which limit nitrogen release, and thus delay the oxidation. Inaddition, the phase separation of CrAlN into CrN and AlN isolates the CrN grains from the surrounding atmosphere andincreases their thermal stability. The same phenomenon is detected after friction tests and seems to account for the improvedwear resistance. Silicon addition results in the formation of a nanocomposite coating for a minimum content of about 2 at.%.This structure is composed of nanometric grains embedded in an amorphous matrix. The structure change is followed by asignificant increase in the oxidation resistance, due to the diffusional barrier properties of the matrix, protecting thereby theCrN nano-grains. In contrast, a too large fraction of amorphous phase appears detrimental to the tribological behavior. Thecoating becomes brittle and is prone to cracks emergence. The use of these individual layers in a multilayer coating can avoidthis last consequence. Thanks to a micro-tensile machine, the alternating architecture was found to limit the cracks formation.Layered film seems thus to be very promising in the case of severe working conditions. Similarly, stratification between CrNand CrAlN allows the synthesis of highly sustainable coatings despite the mechanical properties governed by a law ofmixtures.The originality of this work lies in determining the degradation mechanisms of the different microstructures by establishingthe link between microstructure and wear properties on the one hand, and by in situ observation of damages on the other hand.
10

High-Temperature Corrosion-Fatigue of Cast Alloys for Exhaust Manifolds

Xiang, Shengmei January 2018 (has links)
The introduction of gas-driven Otto engine and the corresponding usage of bio-fuels in heavy-duty engines will render the exhaust atmosphere more corrosive and bring a higher working temperature to exhaust manifolds. The current service material, a ferritic ductile cast iron called SiMo51, will soon meet its upper temperature limit set by the ferrite-austenite transformation at 860ºC. Three alternative materials, as well as SiMo51 serving as reference, are investigated in the present thesis emphasizing on high-temperature corrosion fatigue.  The first aim of this study is to obtain material data and give a quantitative ranking of the materials’ performance. Low-cycle fatigue (LCF) tests at 800ºC in a synthetic exhaust gas (5%O2-10%CO2-5%H2O-1ppmSO2-N2 bal.) are conducted to evaluate the materials’ performance in simulated real working scenarios, where high-temperature, corrosive atmosphere and fatigue conditions during testings are similar to the conditions experienced by the exhaust manifolds. To evaluate the individual effect from high-temperature fatigue and isolate the impact from corrosion, the materials are tested under the same settings but in an argon atmosphere. To evaluate the individual effect from high-temperature corrosion and isolate the impact from mechanical deformation, oxidation tests are carried out at 800ºC in the same synthetic exhaust gas. The second aim is to identify and understand different oxidation behavior and failure mechanisms in the materials, realized by considerable characterizations of the tested specimens. From the fatigue tests, it is found that the austenitic stainless steel HK30 has the highest fatigue resistance, followed by the austenitic cast iron Ni-resist D5S, and the ferritic ductile cast irons SiMo1000 and SiMo51, a ranking valid in both atmospheres. In the exhaust atmosphere, for instance, the improvement in fatigue strength at 15,000 cycles relative to SiMo51 are 260%, 194% and 26%, respectively. Different crack initiation and propagation mechanisms are found for the various combinations of materials and atmospheres. In the exhaust atmosphere, for instance, crack initiation is assisted by oxide intrusion in SiMo51 and crack propagation is affected by crack branching in HK30, mechanisms not observed in argon. By comparing the S-N fatigue curves in the two atmospheres, the influence of oxidation on fatigue life is evaluated. The fatigue life of the cast irons are surprisingly found to be higher in the exhaust atmosphere. Several explanations are suggested for this, considering their very different oxidation behaviors.  This study provides accurate test data that can be used to help industry avoid over-dimensioned design. The investigation of the failure mechanisms promotes better understanding of the correlation between microstructure and mechanical properties. Moreover, the combination of fatigue tests in argon, fatigue tests in exhaust and oxidation tests in exhaust, shows how corrosion and fatigue individually and synergistically affect the materials’ performance at high temperature. / <p>QC 20180917</p>

Page generated in 0.1191 seconds