The redshift drift of objects moving in the Hubble flow has been proposed as a powerful model-independent probe of the underlying cosmology. A measurement of the first- and second-order redshift derivatives appears to be well within the reach of upcoming surveys using as the Extremely Large Telescope high resolution spectrometer (ELT-HIRES) and the Square Kilometer Phase 2 Array (SKA). Here we show that an unambiguous prediction of the R-h = ct cosmology is zero drift at all redshifts, contrasting sharply with all other models in which the expansion rate is variable. For example, multiyear monitoring of sources at redshift z = 5 with the ELT-HIRES is expected to show a velocity shift Delta v = -15 cm s(-1) yr(-1) due to the redshift drift in Planck I > CDM, while Delta v = 0 cm s(-1) yr(-1) in R-h = ct. With an anticipated ELT-HIRES measurement error of +/- 5 cm s(-1) yr(-1) after 5 yr, these upcoming redshift drift measurements might therefore be able to differentiate between R-h = ct and Planck I > CDM at similar to 3 sigma, assuming that any possible source evolution is well understood. Such a result would provide the strongest evidence yet in favour of the R-h = ct cosmology. With a 20-yr baseline, these observations could favour one of these models over the other at better than 5 sigma.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/622477 |
Date | 21 November 2016 |
Creators | Melia, Fulvio |
Contributors | Univ Arizona, Dept Phys, Appl Math Program, Dept Astron |
Publisher | OXFORD UNIV PRESS |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | Article |
Rights | © 2016 The Author Published by Oxford University Press on behalf of the Royal Astronomical Society |
Relation | https://academic.oup.com/mnrasl/article-lookup/doi/10.1093/mnrasl/slw157 |
Page generated in 0.0019 seconds