• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 1
  • Tagged with
  • 18
  • 18
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Future Probes of Cosmology and the High-Redshift Universe

Visbal, Elijah Francis 09 October 2013 (has links)
This thesis is a study in theoretical cosmology with an emphasis on the high-redshift universe and promising directions for future observations. In Chapters 2 and 3, we propose intensity mapping of spectral line emission from galaxies. This is a technique to observe the cumulative emission from many galaxies without resolving individual sources. We use analytic calculations and N-body simulations to predict the observational signal for different emission lines, including those from oxygen, carbon monoxide, and carbon. / Physics
2

Protostar formation in the early universe

Yoshida, Naoki 01 1900 (has links)
No description available.
3

The cosmological rest frame

McKay, James Hadden January 2015 (has links)
The analysis of the uniformity of a spherically averaged Hubble expansion in the Local Group frame of reference by Wiltshire, Smale, Mattsson and Watkins (2013) is extended. We carry out an investigation to constrain the frame of reference from which the spherically averaged Hubble expansion is the most uniform by applying arbitrary Lorentz boosts to the data. The proposition of a systematic boost offset between the Hubble expansion in the Local Group and CMB reference frames is verified within statistical uncertainties. This evidence further supports the claim that the Local Group is closer to the frame of reference in which Hubble expansion should be considered. We subsequently carry out a statistical analysis in search of a frame of minimum expansion variation and find consistent results with the systematic boost offset analysis. However, there is a considerable degeneracy to perform boosts in the plane of the galaxy, which may be a consequence of a lack of constraints from the Zone of Avoidance where data is absent. The COMPOSITE sample of 4,534 galaxies is used primarily, with the key results repeated with the recently released Cosmicflows-2 sample of 8,162 galaxies. The treatment of Malmquist distance bias is investigated in the context of the Cosmicflows-2 and COMPOSITE samples. We find systematic differences in the inclusion of the large SFI++ subsample into these catalogues. These differences are explored and the origin of Malmquist distance bias reviewed. We find the Cosmicflows-2 data produces results which naively suggest more variation of cosmic expansion than would be expected in any cosmological model when the methods of Wiltshire et al. are applied. We trace this discrepancy to the fact that the distribution Malmquist biases have not been corrected for in the Cosmicflows-2 survey.
4

Definitive test of the Rh = ct universe using redshift drift

Melia, Fulvio 21 November 2016 (has links)
The redshift drift of objects moving in the Hubble flow has been proposed as a powerful model-independent probe of the underlying cosmology. A measurement of the first- and second-order redshift derivatives appears to be well within the reach of upcoming surveys using as the Extremely Large Telescope high resolution spectrometer (ELT-HIRES) and the Square Kilometer Phase 2 Array (SKA). Here we show that an unambiguous prediction of the R-h = ct cosmology is zero drift at all redshifts, contrasting sharply with all other models in which the expansion rate is variable. For example, multiyear monitoring of sources at redshift z = 5 with the ELT-HIRES is expected to show a velocity shift Delta v = -15 cm s(-1) yr(-1) due to the redshift drift in Planck I > CDM, while Delta v = 0 cm s(-1) yr(-1) in R-h = ct. With an anticipated ELT-HIRES measurement error of +/- 5 cm s(-1) yr(-1) after 5 yr, these upcoming redshift drift measurements might therefore be able to differentiate between R-h = ct and Planck I > CDM at similar to 3 sigma, assuming that any possible source evolution is well understood. Such a result would provide the strongest evidence yet in favour of the R-h = ct cosmology. With a 20-yr baseline, these observations could favour one of these models over the other at better than 5 sigma.
5

Fundamental constant observational bounds on the variability of the QCD scale

Thompson, Rodger I. 06 1900 (has links)
Many physical theories beyond the Standard Model predict time variations of basic physics parameters. Direct measurement of the time variations of these parameters is very difficult or impossible to achieve. By contrast, measurements of fundamental constants are relatively easy to achieve, both in the laboratory and by astronomical spectra of atoms and molecules in the early universe. In this work, measurements of the proton to electron mass ratio mu and the fine structure constant alpha are combined to place mildly model-dependent limits on the fractional variation of the quantum chromodynamic scale and the sum of the fractional variations of the Higgs vacuum expectation value (VEV) and the Yukawa couplings on time-scales of more than half the age of the universe. The addition of another model parameter allows the fractional variation of the Higgs VEV and the Yukawa couplings to be computed separately. Limits on their variation are found at the level of less than 5 x 10(-5) over the past 7 Gyr. A model-dependent relation between the expected fractional variation of a relative to mu tightens the limits to 10(-7) over the same time span. Limits on the present day rate of change of the constants and parameters are then calculated using slow roll quintessence. A primary result of this work is that studies of the dimensionless fundamental constants such as a and mu, whose values depend on the values of the physics parameters, are excellent monitors of the limits on the time variation of these parameters.
6

Simulations of mass accretion onto dark matter haloes and angular momentum transfer to a Milky Way disk at high redshift

Tillson, Henry January 2012 (has links)
This thesis presents results from two simulation studies of galaxy formation. In the first project, a dark-matter-only HORIZON simulation is used to investigate the environment and redshift dependence of mass accretion onto haloes and subhaloes. It is found that the halo accretion rate varies less strongly with redshift than predicted by the Extended Press--Schechter formalism, and that low accretion events may drive the radio-mode feedback hypothesized for recent galaxy formation models. The subhaloes at $z<0.5$ in the simulation accrete at higher rates than haloes, on average, and it is argued that this is due to their enhanced clustering at small scales. There is no dependence of accretion rate on environment at $zsim2$, but a weak correlation emerges at $zleq0.5$. The results further support previous suggestions that at $z>1$, dark matter haloes and their associated black holes grew coevally, but imply that haloes could be accreting at fractional rates that are up to a factor of 3--4 higher than their associated black holes by the present day. In the second project, outputs from one of the Adaptive Mesh Refinement NUT simulations are analyzed in order to test whether filamentary flows of cold gas are responsible for the build-up of angular momentum within a Milky Way type disk at $zgeq3$. A set of algorithms are presented that use the resolved physical scale of $12,mathrm{pc}$ to identify: (i) the central gas disk and its plane of orientation; (ii) the complex individual filament trajectories that connect to the disk, and; (iii) the infalling satellites. The results suggest that two filaments at $zgtrsim 5.5$, which later merge to form a single filament at $zlesssim 4$, drive the angular momentum and mass budget of the disk between $3lesssim zlesssim 8$, whereas luminous satellite mergers make negligible fractional contributions. These findings hence provide strong quantitative evidence that the growth of thin disks in low mass haloes at high redshift is supported via inflowing streams of cold gas.
7

Cosmic Reionization on Computers: Properties of the Post-reionization IGM

Gnedin, Nickolay Y., Becker, George D., Fan, Xiaohui 19 May 2017 (has links)
We present a comparison between several observational tests of the post-reionization intergalactic medium and the numerical simulations of reionization completed under the Cosmic Reionization On Computers (CROC) project. The CROC simulations match the gap distribution reasonably well, and also provide a good match for the distribution of peak heights, but there is a notable lack of wide peaks in the simulated spectra and the flux-probability distribution functions are poorly matched in the narrow redshift interval 5.5 < z < 5.7, with the match at other redshifts being significantly better, albeit not exact. Both discrepancies are related: simulations show more opacity than the data.
8

Comparing Cosmological Hydrodynamic Simulations with Observations of High-Redshift Galaxy Formation

Finlator, Kristian Markwart January 2009 (has links)
We use cosmological hydrodynamic simulations to study the impact of out-flows and radiative feedback on high-redshift galaxies. For outflows, we consider simulations that assume (i) no winds, (ii) a .constant-wind. model in which the mass-loading factor and outflow speed are constant, and (iii) "momentum driven" winds in which both parameters vary smoothly with mass. In order to treat radiative feedback, we develop a moment-based radiative transfer technique that operates in both post-processing and coupled radiative hydrodynamic modes. We first ask how outflows impact the broadband spectral energy distributions (SEDs) of six observed reionization-epoch galaxies. Simulations reproduce five regardless of the outflow prescription, while the sixth suggests an unusually bursty star formation history. We conclude that (i) simulations broadly account for available constraints on reionization-epoch galaxies, (ii) individual SEDs do not constrain outflows, and (iii) SED comparisons efficiently isolate objects that challenge simulations. We next study how outflows impact the galaxy mass metallicity relation (MZR). Momentum-driven outflows uniquely reproduce observations at z = 2. In this scenario, galaxies obey two equilibria: (i) The rate at which a galaxy processes gas into stars and outflows tracks its inflow rate; and (ii) The gas enrichment rate owing to star formation balances the dilution rate owing to inflows. Combining these conditions indicates that the MZR is dominated by the (instantaneous) variation of outflows with mass, with more-massive galaxies driving less gas into outflows per unit stellar mass formed. Turning to radiative feedback, we use post-processing simulations to study the topology of reionization. Reionization begins in overdensities and then .leaks. directly into voids, with filaments reionizing last owing to their high density and low emissivity. This result conflicts with previous findings that voids ionize last. We argue that it owes to the uniqely-biased emissivity field produced by our star formation prescriptions, which have previously been shown to reproduce numerous post-reionization constraints. Finally, preliminary results from coupled radiative hydrodynamic simulations indicate that reionization suppresses the star formation rate density by at most 10.20% by z = 5. This is much less than previous estimates, which we attribute to our unique reionization topology although confirmation will have to await more detailed modeling.
9

Cosmological tests with the FSRQ gamma-ray luminosity function

Zeng, Houdun, Melia, Fulvio, Zhang, Li 01 November 2016 (has links)
The extensive catalogue of gamma-ray selected flat-spectrum radio quasars (FSRQs) produced by Fermi during a four-year survey has generated considerable interest in determining their gamma-ray luminosity function (GLF) and its evolution with cosmic time. In this paper, we introduce the novel idea of using this extensive database to test the differential volume expansion rate predicted by two specific models, the concordance Lambda cold darkmatter (Lambda CDM) and R-h = ct cosmologies. For this purpose, we use two well-studied formulations of the GLF, one based on pure luminosity evolution (PLE) and the other on a luminosity-dependent density evolution (LDDE). Using a Kolmogorov-Smirnov test on one-parameter cumulative distributions (in luminosity, redshift, photon index and source count), we confirm the results of earlier works showing that these data somewhat favour LDDE over PLE; we show that this is the case for both Lambda CDM and R-h = ct. Regardless of which GLF one chooses, however, we also show that model selection tools very strongly favour R-h = ct over Lambda CDM. We suggest that such population studies, though featuring a strong evolution in redshift, may none the less be used as a valuable independent check of other model comparisons based solely on geometric considerations.
10

The linear growth of structure in the Rh = ct universe

Melia, Fulvio 11 January 2017 (has links)
We use recently published redshift space distortion measurements of the cosmological growth rate, f sigma(8)(z), to examine whether the linear evolution of perturbations in the R-h = ct cosmology is consistent with the observed development of large-scale structure. We find that these observations favour R-h = ct over the version of Lambda cold dark matter (Lambda CDM) optimized with the joint analysis of Planck and linear growth rate data, particularly in the redshift range 0 < z < 1, where a significant curvature in the functional form of f sigma(8)(z) predicted by the standard model-but not by R-h = ct-is absent in the data. When Lambda CDM is optimized using solely the growth rate measurements; however, the two models fit the observations equally well though, in this case, the low-redshift measurements find a lower value for the fluctuation amplitude than is expected in Planck Lambda CDM. Our results strongly affirm the need for more precise measurements of f sigma(8)(z) at all redshifts, but especially at z < 1.

Page generated in 0.0398 seconds