The detection of gamma-rays is an important issue in a cast array ofindustries. CdTe is a semiconductor used for gamma-ray detectors whichcan operate at high temperatures. Density functional theory calculationsof the electronic structure within the Perdew-Burke-Ernzerhof exchange-correlation functional underestimate the bandgap of CdTe: the calculatedbandgap within PBE is less than half the experimental value. The useof a hybrid functional approach to exchange and correlation describes thebandgap correctly. The goal of this project was to nd out if PBE calcu-lations give an adequate description of defects in CdTe by comparing it tohybrid functional calculations. We show that PBE is adequate in describ-ing Te antisite defects in CdTe if a correction to the bandgap is applied.The defect level for both PBE and hybrid functional was calculated to be0.24 eV above the valance band.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-202595 |
Date | January 2013 |
Creators | Árdal, Kristinn Björgvin |
Publisher | Uppsala universitet, Materialteori |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | FYSAST ; FYSKAND1004 |
Page generated in 0.0023 seconds