Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2018-01-24T17:49:23Z
No. of bitstreams: 1
2017 - Leandro Martins Ferreira.pdf: 2738374 bytes, checksum: a6ccde64b30f6cd52122b9030ab6c92e (MD5) / Made available in DSpace on 2018-01-24T17:49:25Z (GMT). No. of bitstreams: 1
2017 - Leandro Martins Ferreira.pdf: 2738374 bytes, checksum: a6ccde64b30f6cd52122b9030ab6c92e (MD5)
Previous issue date: 2017-02-22 / CAPES / Faperj / CNPq / Among the abiotic stress, drought is a major environmental stress seriously limiting plant growth and crop productivity. Rice is one of the most important staple food crops in the world and requires a larger quantity of water to produce, once it is a crop extremely sensitive to drought stress. For this reason, to obtain rice plants that cope with drought stress without major reduction in productivity is the challenge for breeding programs nowadays. This work aimed: (i) identify upland rice varieties with contrasting drought tolerance through the evaluation of morphological and physiological traits, (ii) analyse root parameters which could explain the differences between tolerant and sensitive varieties to the drought stress and, (iii) identify new biotechnological targets related with the tolerance through transcript profile analysis in the contrasting varieties. Six experiments were performed, two in greenhouse and four in growth chamber conditions. The experimental design adopted was completely randomized. The first experiment started with ten rice varieties submitted to control and stress conditions during the reproductive stage. The contrasting varieties were selected based on morphological and physiological traits. Experiments from II to IV aimed to correlate the tolerance to the drought stress with the root development and morphology. Experiment V aimed to evaluate the regulation of genes related to the drought tolerance and the experiment VI aimed to analyse the differential expression of genes through the RNAseq analysis in rice roots. Data obtained from the productivity components, tolerance index and multivariate analysis through the evaluation of morphological and physiological traits allowed to identify Catet?o and Piau? variety as the most tolerant and Quebra Cacho and Mira as the most sensitive. Drought tolerance was correlated with a lower root angle and increase in the root density and emission of lateral roots by Catet?o variety during drought stress. Moreover, Catet?o variety has showed higher expression levels and early induction of genes and transcription factors related with drought tolerance. The RNAseq analysis allowed to identify several potential genes which can be used in future breeding programs aimimg the improvement of drought tolerance in rice. / Dentre os estresses abi?ticos que podem limitar o crescimento das culturas agr?colas, a seca ? considerada um dos principais, sendo capaz de reduzir consideravelmente a produ??o global de alimentos. O arroz ? uma das mais importantes culturas agr?colas do mundo e sua produ??o demanda grande quantidade de ?gua, pois ? uma esp?cie extremamente sens?vel ao d?ficit h?drico. Portanto, a obten??o de plantas de arroz que lidam com o estresse h?drico, sem redu??o significativa de produtividade ? um desafio para os programas de melhoramento atuais. Este trabalho teve como objetivos: (i) identificar variedades de arroz de sequeiro contrastantes quanto ? toler?ncia ao estresse h?drico por meio da avalia??o de caracter?sticas morfol?gicas e fisiol?gicas, (ii) analisar par?metros radiculares que possam explicar a diferen?a entre variedades tolerantes e sens?veis ao estresse h?drico e, (iii) identificar novos alvos biotecnol?gicos envolvidos com essa toler?ncia por meio da an?lise do perfil de transcritos nas variedades de arroz contrastantes. Foram realizados seis experimentos, sendo dois em casa de vegeta??o e quatro em c?mara de crescimento. O delineamento experimental utilizado foi o inteiramente casualizado. O primeiro experimento iniciou com dez variedades de arroz submetidas a condi??o controle e estresse h?drico durante o per?odo reprodutivo. As variedades contrastantes foram selecionadas com base em caracter?sticas morfol?gicas e fisiol?gicas analisadas. Os experimentos II a IV foram realizados a fim de correlacionar a toler?ncia ao estresse com o desenvolvimento e morfologia do sistema radicular. O experimento V foi realizado para avaliar a regula??o de genes relacionados a toler?ncia ao estresse h?drico e o experimento VI teve como objetivo analisar a express?o diferencial de genes por meio da t?cnica de RNA-seq em ra?zes de arroz. Os dados obtidos dos componentes de produtividade, ?ndices de toler?ncia ao estresse e an?lise multivariada das caracter?sticas morfol?gicas e fisiol?gicas permitiram identificar as variedades Catet?o e Piau? como as mais tolerantes ao estresse h?drico, e Quebra Cacho e Mira como as mais sens?veis. Foi observado que a toler?ncia ao estresse h?drico est? correlacionada com o menor ?ngulo radicular, aumento da densidade e emiss?o de ra?zes laterais em condi??es de d?ficit h?drico na variedade Catet?o. Al?m disso, essa variedade mostra indu??o r?pida e elevados n?veis de express?o de genes e fatores de transcri??o relacionados ? toler?ncia ao estresse h?drico em arroz. Por meio do sequenciamento do RNA foi poss?vel identificar diversos genes com potencial para serem utilizados em programas de melhoramento visando o aumento da toler?ncia ao estresse h?drico em arroz.
Identifer | oai:union.ndltd.org:IBICT/oai:localhost:jspui/2173 |
Date | 22 February 2017 |
Creators | FERREIRA, Leandro Martins |
Contributors | Santos, Leandro Azevedo, Souza, Sonia Regina de, Santos, Leandro Azevedo, Santos, Andr? Marques dos, Rossiello, Roberto Oscar Pereyra, Martins, Gilberto Sachetto, Cabral, Luiz Mors |
Publisher | Universidade Federal Rural do Rio de Janeiro, Programa de P?s-Gradua??o em Agronomia e Ci?ncia do Solo, UFRRJ, Brasil, Instituto de Agronomia |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ, instname:Universidade Federal Rural do Rio de Janeiro, instacron:UFRRJ |
Rights | info:eu-repo/semantics/openAccess |
Relation | ABDI, N.; DARVISHZADEH, R.; MALEKI HATAMI, H. Effective selection criteria for screening drought tolerant recombinant inbred lines of sunflower. Genetika, v. 45, n. 1, p. 153-166, 2013. AFGAN, E.; BAKER, D.; VAN DEN BEEK, M.; BLANKENBERG, D.; BOUVIER, D.; ?ECH, M.; GRUNING, B. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic acids research, v. 1, n.1, p.1-8, 2016. AHMADI, N.; AUDEBERT, A.; BENNETT, M. J.; BISHOPP, A.; DE OLIVEIRA, A. C.; COURTOIS, B.; GUIDERDONI, E. The roots of future rice harvests. Rice, v. 7, n. 1, p. 1, 2014. ALI, M. L.; LUETCHENS, J.; NASCIMENTO, J.; SHAVER, T. M.; KRUGER, G. R.; LORENZ, A. J. Genetic variation in seminal and nodal root angle and their association with grain yield of maize under water-stressed field conditions. Plant and Soil, v. 397, n. 1-2, p. 213-225, 2015. AMBAVARAM, M. M.; BASU, S.; KRISHNAN, A.; RAMEGOWDA, V.; BATLANG, U.; RAHMAN, L.; BAISAKH, N.; PEREIRA, A. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. Nature communications, v. 5, n. 1, p. 1-14, 2014. ANDERS, S.; PYL, P. T.; HUBER, W. HTSeq?a Python framework to work with high-throughput sequencing data. Bioinformatics, v. 31, n. 2, p. 166-169, 2014. ANDREWS, S. FastQC: A quality control tool for high throughput sequence data. Reference Source, 2010. Dispon?vel em: http://www.bioinformatics.babraham.ac.uk/projects/fastqc. Acessado em: 24/11/2016. ARAKI, H.; MORITA, S.; TATSUMI, J.; IIJIMA, M. Physiol-morphological analysis on axile root growth in upland rice. Plant production science, v. 5, n. 4, p. 286-293, 2002. ARA?JO, Osm?rio Jos? Lima de. Caracteriza??o do potencial produtivo e da rela??o entre produtividade e teor de prote?na bruta dos gr?os de variedades locais de arroz. 2014. 44f. Tese (Doutorado em Agronomia ? Ci?ncia do Solo). Instituto de Agronomia, Departamento de Solos, Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ, 2014. ARAUS, J. L.; SLAFER, G. A.; REYNOLDS, M. P.; ROYO, C. Plant breeding and drought in C3 cereals: what should we breed for? Annals of Botany, v. 89, n. 7, p. 925-940, 2002. ARNON, D. I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant physiology, v. 24, n. 1, p. 1, 1949. BABU, R. C. Breeding for drought resistance in rice: an integrated view from physiology to genomics. Electronic Journal of Plant Breeding, v.1, n. 4, p. 1133-1141, 2010. BAJJI, M.; KINET, J. M.; LUTTS, S. The use of electrolyte leakage method for assessing cell membrane stability as water stress tolerance test in durum wheat. Plant Growth Regulation. v. 36, 61?70, 2002. BARBAZUK, W. B., EMRICH, S. J., CHEN, H. D., LI, L.; SCHNABLE, P. S. SNP discovery via 454 transcriptome sequencing. The plant journal, v. 51, n. 5, p. 910-918, 2007. BARRS, H. D. Determination of water deficits in plant tissues. In: KOZLOWSKI, T. T. (Ed.) Water deficits and plant growth, New York, Academic Press, 1968, p. 235-368. BASU, S.; ROYCHOUDHURY, A.; SAHA, P. P.; SENGUPTA, D. N. Differential antioxidative responses of indica rice cultivars to drought stress. Plant Growth Regulation, v. 60, n. 1, p. 51-59, 2010. BATES, L. S.; WALDREW, R. P.; TEARE, I. D. Rapid determination of free proline for water-stress studies. Plant and Soil, v. 39, n.1, p. 205-207, 1973. BEERS, R. F.; SIZER, I. W. A spectrophotometric method for measuring the break-down of hydrogen peroxide by catalase. Journal of Biology Chemical, v. 195, n. 1, p. 133?140, 1952. BEGCY, K.; MARIANO, E. D.; GENTILE, A.; LEMBKE, C. G.; ZINGARETTI, S. M.; SOUZA, G. M.; MENOSSI, M. A novel stress-induced sugarcane gene confers tolerance to drought, salt and oxidative stress in transgenic tobacco plants. PloS one, v. 7, n. 9, p. e44697, 2012. BENJAMINI, Y.; HOCHBERG, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the royal statistical society, v. 57, n. 1, p. 289-300, 1995. BEVITORI, R.; OLIVEIRA, M. B.; GROSSI-DE-SA, M. F.; LANNA, A. C.; DA SILVEIRA, R. D.; PETROFEZA, S. Selection of optimized candidate reference genes for qRT-PCR normalization in rice (Oryza sativa L.) during Magnaporthe oryzae infection and drought. Genetics and Molcular Research, v. 13, n. 4, p. 9795-9805, 2014. BIENERT, G. P.; CHAUMONT, F. Plant Aquaporins: Roles in Water Homeostasis, Nutrition, and Signaling Processes. In: GEISLER, M.; VENEMA, K. Transporters and Pumps in Plant Signaling. New York. Ed. Springer, 2010, p. 3-36. BISCARINI, F.; COZZI, P.; CASELLA, L.; RICCARDI, P.; VATTARI, A.; ORASEN, G.; CATTIVELLI, L. Genome-Wide Association Study for Traits Related to Plant and Grain Morphology, and Root Architecture in Temperate Rice Accessions. PloS one, v. 11, n. 5, p. 1-28, 2016. BLUM, A. Drought resistance ? is it really a complex trait? Functional Plant Biology, v. 38, n. 10, p. 753-757, 2011. BOGUSKI, M. S.; TOLSTOSHEV, C. M.; BASSETT, D. E. JR. Gene discovery in dbEST. Science, v. 265, n. 5181, p. 1993-1994, 1994. BOLGER, A. M.; LOHSE, M.; USADEL, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, v. 30, n. 15, p. 2114-2120, 2014. BOUMAN, B. A. M.; HUMPHREYS, E.; TUONG, T. P.; BARKER, R. Rice and water. Advances in agronomy, v. 92, n. 1, p. 187-237, 2007. BOUMAN, B. A. M.; PENG, S.; CASTA?EDA, A. R.; VISPERAS, R. M. Yield and water use of irrigated tropical aerobic rice systems. Agricultural Water Management, v. 74, n. 2, p. 87-105, 2005. BOYER, J.S. Plant productivity and environment. Science, v. 218, n. 4571, p. 443-448, 1982. BRADFORD, M. M. Rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein dye-binding. Analytical Biochemistry, v.72, p.248-254, 1976. BRETON, G.; DANYLUK, J.; CHARRON, J. B. F.; SARHAN, F. Expression profiling and bioinformatic analyses of a novel stress-regulated multispanning transmembrane protein family from cereals and Arabidopsis. Plant physiology, v. 132, n. 1, p. 64-74, 2003. BROZYNSKA, M.; FURTADO, A.; HENRY, R. J. Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant biotechnology journal, v. 14, n. 1, p. 1070-1085, 2015. BURSSENS, S.; HIMANEN, K.; VAN DE COTTE, B.; BEECKMAN, T.; VAN MONTAGU, M.; INZ?, D.; VERBRUGGEN, N. Expression of cell cycle regulatory genes and morphological alterations in response to salt stress in Arabidopsis thaliana. Planta, v. 211, n. 5, p. 632-640, 2000. CAI, J.; ZENG, Z.; CONNOR, J. N.; HUANG, C. Y.; MELINO, V.; KUMAR, P.; MIKLAVCIC, S. J. RootGraph: a graphic optimization tool for automated image analysis of plant roots. Journal of experimental botany. v. 66, n. 21, p. 6551-6562, 2015. CASTILLO, E. G.; TUONG, T. P.; SINGH, U.; INUBUSHI, K.; PADILLA, J. Drought response of dry-seeded rice to water stress timing and N-fertilizer rates and sources. Soil science and plant nutrition, v. 52, n. 4, p. 496-508, 2006. CHA-UM, S.; SAMPHUMPHUANG, T.; KIRDMANEE, C. Glycinebetaine alleviates water deficit stress in indica rice using proline accumulation, photosynthetic efficiencies, growth performances and yield attributes. Australian Journal of Crop Science, v. 7, n. 2, p. 213-218, 2013. CHA-UM, S.; YOOYONGWECH, S.; SUPAIBULWATANA, K. Water deficit stress in the reproductive stage of four indica rice (Oryza sativa L.) genotypes. Pakistan Journal of Botany, v. 42, n. 5, p. 3387-3398, 2010. CHEN, X.; CUI, Z.; FAN, M.; VITOUSEK, P.; ZHAO, M.; MA, W.; DENG, X. Producing more grain with lower environmental costs. Nature, v. 514, n. 7523, p. 486-489, 2014. CHEN, X.; SHI, J.; HAO, X.; LIU, H.; SHI, J.; WU, Y.; MAO, C. OsORC3 is required for lateral root development in rice. The Plant Journal, v. 74, n. 2, p. 339-350, 2013. CHOUKAN, R. T.; TAHERKHANI, M. R.; GHANNADHA, A.; KHODARAHMI, M. Evaluation of drought tolerance maize lines by drought stress tolerance indices. Iranian Journal of Agricultural Science, v. 8, n. 1, p. 2000-2010, 2006. CLOONAN, N.; FORREST, A. R.; KOLLE, G.; GARDINER, B. B.; FAULKNER, G. J.; BROWN, M. K.; TAYLOR, D. F.; STEPTOE, A. L.; WANI, S.; BETHEL, G.; ROBERSTSON, A. J.; PERKINS, A. C.; BRUCE, S. J.; LEE, C. C.; RANADE, S. S.; PECKHAM, H. E.; MANNING, J. M.; MCKERNAN, K. J.; GRIMMOND, S. M. Stem cell transcriptome profiling via massive scale mRNA sequencing. Nature methods, v. 5, n. 7, p. 613-619, 2008. CLOUGH, S. J.; BENT, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, v. 16, n. 6, p. 735?743, 1998. COCHRAN, W. G. The distribution of the largest of a set of estimated variances as a fraction of their total. Annals of Eugenics, v. 22, n. 11, p. 47-52, 1947. COMAS, L. H.; BECKER, S. R.; VON MARK, V. C.; BYRNE, P.F.; DIERIG, D. A. Root traits contributing to plant productivity under drought. Ecophysiology of root systems-environment interaction, v. 5, n. 4, p.1-18, 2014. CONAB. Acompanhamento de safra brasileira: gr?os, sexto levantamento, mar?o 2013. Companhia Nacional de Abastecimento ? Bras?lia: Conab, 25p. 2013. Dispon?vel em: http://www.conab.gov.br/OlalaCMS/uploads/arquivos/13_03_07_10_39_19_levantamento_safras_graos_6.pdf. Acessado em: 26/11/2016. CORR?A, L. G. G.; RIA?O-PACH?N, D. M.; SCHRAGO, C. G.; DOS SANTOS, R. V.; MUELLER-ROEBER, B.; VINCENTZ, M. The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS One, v. 3, n. 8, p. e2944, 2008. CRAMER, G. R.; URANO, K.; DELROT, S.; PEZZOTTI, M.; SHINOZAKI, K. Effects of abiotic stress on plants: a systems biology perspective. BMC plant biology, v. 11, n. 1, p. 163, 2011. CRUZ, C. D.; CARNEIRO, P. C. S. Modelos biom?tricos aplicados ao melhoramento gen?tico. Volume 2. Vi?osa: Editora UFV, 2003. 585 p. DALAL, V. K.; TRIPATHY, B. C. Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis. Plant, cell & environment, v. 35, n. 9, p. 1685-1703, 2012. DARVISHZADEH, R.; PIRZAD, A.; HATAMI-MALEKI, H.; POORMOHAMMAD-KIANI, S.; SARRAFI, A. Evaluation of the reaction of sunflower inbred lines and their F1 hybrids to drought conditions using various stress tolerance indices. Spanish Journal of Agricultural Research, v. 8, n. 4, p. 1037-1046, 2010. DAVID, L.; HUBER, W.; GRANOVSKAIA, M.; TOEDLING, J.; PALM, C. J.; BOFKIN, L.; JONES, T.; DAVIS, R.W.; STEINMETZ, L. M. A high-resolution map of transcription in the yeast genome. Proceedings of the National Academy of Sciences, v. 103, n. 14, p. 5320-5325, 2006. DE DATTA, S. K.; MALABUYOC, J. A.; ARAGON, E. L. A field screening technique for evaluating rice germplasm for drought tolerance during the vegetative stage. Field Crops Research, v. 19, n. 2, p. 123-134, 1988. DEMIRAL, T.; TURKAN, I. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany, v. 53, n. 3, p. 247-257, 2005. DING, L.; GAO, C.; LI, Y.; LI, Y.; ZHU, Y.; XU, G.; GUO, S. The enhanced drought tolerance of rice plants under ammonium is related to aquaporin (AQP). Plant Science, v. 234, n. 1, p. 14-21, 2015. DOERNER, P. W. Cell cycle regulation in plants. Plant physiology, v. 106, n. 3, p. 823, 1994. DONALD, C. M.; HAMBLIN, J. The biological yield and harvest index of cereals as agronomic and plant breeding criteria. Advances in Agronomy, v. 28, n. 1, p. 361-405, 1976. DUBOUZET, J. G.; SAKUMA, Y.; ITO, Y.; KASUGA, M.; DUBOUZET, E. G.; MIURA, S.; YAMAGUCHI?SHINOZAKI, K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought?, high?salt?and cold?responsive gene expression. The Plant Journal, v. 33, n. 4, p. 751-763, 2003. DYSON T. World food trends and prospects to 2025.Proceedings of the National Academy of Sciences, USA v. 96, p. 5929?5936, 1999. EMBRAPA ? Cultivo do arroz irrigado no Brasil. Dispon?vel em: http://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Arroz/ArrozIrrigadoBrasil/cap01.htm. Acessado em: 23/07/2013. EVENSON, R. E.; GOLLIN, D. Assessing the Impact of the Green Revolution, 1960 to 2000. Science, v. 300, n. 5620, p. 758-762, 2003. 2015. FAGERIA, N. K.; MOREIRA, A. The Role of Mineral Nutrition on Root Growth of Crop Plants. Advances in Agronomy, v. 110, n. 1, p. 251-331, 2011. FAO - Food and Agriculture Organization of the United Nations. Dispon?vel em: http://www.fao.org/nr/water/issues/scarcity.html. Acessado em 26/01/2017. 2015. FAO - Food and Agriculture Organization of the United Nations. FAOSTAT database: agriculture production. Rome: Food and Agriculture Organization of the United Nations. Dispon?vel em: http://www.fao.org/home/en/. Acessado em: 30/12/2016. 2016. FAO - Food and Agriculture Organization of the United Nations. Food outlook: Biannual report on global food markets. Dispon?vel em: http://www.fao.org/3/a-i5703e.pdf. Acessado em: 26/01/2017. 2016. FAO - Food and Agriculture Organization of the United Nations. Global agriculture towards 2050. High Level Expert Forum-How to feed the world 2050, p. 1?4, 2009. FAO - Food and Agriculture Organization of the United Nations. The State of Food Insecurity in the World. Dispon?vel em: http://www.fao.org/docrep/016/i3027e/i3027e.pdf Acessado em 04/08/2013. 2012. FEDURCO, M.; ROMIEU, A.; WILLIAMS, S.; LAWRENCE, I.; TURCATTI, G. BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies. Nucleic acids research, v. 34, n. 3, p. e22-28, 2006. FENG, F.; XU, X.; DU, X.; TONG, H.; LUO, L.; MEI, H. Assessment of drought resistance among wild rice accessions using a protocol based on single-tiller propagation and PVC-tube cultivation. Australian Journal of Crop Science, v. 6, n. 7, p. 1204, 2012. FERNANDEZ, G. C. J. Effective selection criteria for assessing plant stress tolerance. In: Proceedings of the international symposium on adaptation of vegetative and other food crops in temperature and water stress. 1992. v. 13, p. 257-270. FERREIRA, D. F. An?lises estat?sticas por meio do Sisvar para Windows vers?o 4.0. In. REUNI?O ANUAL DA REGI?O BRASILEIRA DA SOCIEDADE INTERNACIONAL DE BIOMETRIA. Anais. S?o Carlos: UFSCar, p. 255-258, 2000. FISCHER, K. S.; LAFITTE, S.; FUKAI, S.; ATLIN, G.; HARDY, B. Breeding rice for drought-prone environments. International Rice Research Institute, Los Ba?os, Philippines, 2003. 98p. FISCHER, K. S.; WOOD, G. Breeding and selection for drought tolerance in tropical maize. In: Proceedings of the Symposium on Principles and methods in crop improvement for drought resistance with emphasis on rice. IRRI, Philippines. 1981. p. 47-58. FISCHER, R. A.; MAURER, R. Drought resistance in spring wheat cultivars. Australian Journal of Agricultural Research, v. 29, n. 5, p. 897-912, 1978. FONSECA, J. R.; VIEIRA, E. H. N.; PEREIRA, J. A.; DOS ANJOS CUTRIM, V. Descritores morfoagron?micos e fenol?gicos de cultivares tradicionais de arroz coletados no Maranh?o. Revista Ceres, v. 51, n. 293, p. 45-56, 2004. FOSTER, J. G.; HESS, J. L. Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen, Plant Physiology, v. 66, p. 482-487, 1980. FUKAI, S.; COOPER, M. Development of drought-resistant cultivars using physiomorphological traits in rice. Field Crops Research, v. 40, n. 2, p. 67-86, 1995. GAO, Y.; XU, H.; SHEN, Y.; WANG, J. Transcriptomic analysis of rice (Oryza sativa) endosperm using the RNA-Seq technique. Plant molecular biology, v. 81, n. 4-5, p. 363-378, 2013. GERBEAU, P.; AMODEO, G.; HENZLER, T.; SANTONI, V.; RIPOCHE, P.; MAUREL, C. The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH. The Plant Journal, v. 30, n. 1, p. 71-81, 2002. GOMES, M. A. F. A ?gua nossa de cada dia. Revista Panorama Rural, n. 122, p. 44 ? 48, 2009. Dispon?vel em: http://www.eco21.com.br/textos/textos.asp?ID=1938. Acessado em: 15/03/2015. GOWDA, V. R.; HENRY, A.; YAMAUCHI, A.; SHASHIDHAR, H. E.; SERRAJ, R. Root biology and genetic improvement for drought avoidance in rice. Field Crops Research, v. 122, n. 1, p.1-13, 2011. GOYA, R.; MEYER, I. M.; MARRA, M. A. Applications for high-throughput sequencing. In: RODR?GUEZ-EZPELETA, N.; HACKENBERG, M.; ARANSAY, A. M. Bioinformatics for high throughput sequencing. Springer, 2012, p. 27-54. GRONDIN, A.; MAULEON, R.; VADEZ, V.; HENRY, A. Root aquaporins contribute to whole plant water fluxes under drought stress in rice (Oryza sativa L.). Plant, cell & environment, v. 39, n. 2, p. 347-365, 2016. GUENDOUZ, A.; GUESSOUM, S.; HAFSI, M. Investigation and selection index for drought stress in durum wheat (Triticum durum Desf.) under Mediterranean condition. Electronic Journal of Plant Breeding, v. 3, n. 2, p. 733-740, 2012. HAAKE, V.; COOK, D.; RIECHMANN, J.; PINEDA, O.; THOMASHOW, M. F.; ZHANG, J. Z. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant physiology, v. 130, n. 2, p. 639-648, 2002. HEATH, R. L.; PACKER, L. Photoperoxidation in isolated chloroplasts. I. Kinetics and Stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, v. 125, p.189-198, 1968. HENRY, A. IRRI?s drought stress research in rice with emphasis on roots: accomplishments over the last 50 years. Plant Root, v. 7, p. 5-19, 2013. HENRY, A.; CAL, A. J.; BATOTO, T. C.; TORRES, R. O.; SERRAJ, R. Root attributes affecting water uptake of rice (Oryza sativa) under drought. Journal of Experimental Botany, v. 63, n. 13, p. 4751-4763, 2012. HENRY, A.; GOWDA, V. R.; TORRES, R. O.; MCNALLY, K. L.; SERRAJ, R. Variation in root system architecture and drought response in rice (Oryza sativa): phenotyping of the OryzaSNP panel in rainfed lowland fields. Field Crops Research, v. 120, n. 2, p. 205-214, 2011. HERDER, G. D.; VAN ISTERDAEL, G.; BEECKMAN, T.; DE SMET, I. The roots of a new green revolution. Trends in plant science, v. 15, n. 11, p. 600-607, 2010. HOAGLAND, D. R.; ARNON, D. I. The water-culture method for growing plants without soil. California Agricultural of Experimental Station Bull, v. 347, p. 1-32, 1950. HORN, R.; PAULSEN, H. Folding in vitro of light-harvesting chlorophyll a/b protein is coupled with pigment binding. Journal of molecular biology, v. 318, n. 2, p. 547-556, 2002. HOSHIDA, H.; TANAKA, Y.; HIBINO, T.; HAYASHI, Y.; TANAKA, A.; TAKABE, T.; TAKABE, T. Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant molecular biology, v. 43, n. 1, p. 103-111, 2000. HOSSAIN, A. B. S.; SEARS, R. G.; COX, T. S.; PAULSEN, G. M. Desiccation tolerance and its relationship to assimilate partitioning in winter wheat. Crop Science, v. 30, n. 3, p. 622-627, 1990. HU, H.; XIONG, L. Genetic engineering and breeding of drought-resistant crops. Annual review of plant biology, v. 65, p. 715-741, 2014. HUANG, X. Y.; CHAO, D. Y.; GAO, J. P.; ZHU, M. Z.; SHI, M.; LIN, H. X. A. previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes & Development, v. 23, n. 15, p. 1805-1817, 2009. IBGE. Indicadores IBGE ? Estat?stica da produ??o agr?cola 2016. Dispon?vel em: ftp://ftp.ibge.gov.br/Producao_Agricola/Fasciculo_Indicadores_IBGE/estProdAgr_201601.pdf. Acessado em: 26/01/2017. INZ?, D.; DE VEYLDER, L. Cell cycle regulation in plant development. Annual Review of Genetics, v. 40, n. 1, p. 77-105, 2006. IRRI, I. Standard evaluation system for rice. International Rice Research Institute, Philippine, 2002. Dispon?vel em: http://www.knowledgebank.irri.org/images/docs/rice-standard-evaluation-system.pdf. Acessado em: 12/04/2014. JAIN, M.; MATHUR, G.; KOUL, S.; SARIN, N. Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.). Plant Cell Reports, v. 20, n. 5, p. 463-468, 2001. JAIN, M.; NIJHAWAN, A.; TYAGI, A. K.; KHURANA, J. P. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochemical and biophysical research communications, v. 345, n. 2, p. 646-651, 2006. JAN, A.; MARUYAMA, K.; TODAKA, D.; KIDOKORO, S.; ABO, M.; YOSHIMURA, E.; YAMAGUCHI-SHINOZAKI, K. OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Plant physiology, v. 161, n. 3, p. 1202-1216, 2013. JEONG, J. S.; KIM, Y. S.; BAEK, K. H.; JUNG, H.; HA, S. H.; DO CHOI, Y. KIM, M.; REUZEAU, C.; KIM, J. K. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiology, v. 153, n. 1, p. 185-197, 2010. JI, K.; WANG, Y.; SUN, W.; LOU, Q.; MEI, H.; SHEN, S.; CHEN, H. Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. Journal of plant physiology, v. 169, n. 4, p. 336-344, 2012. JNANDABHIRAM, C.; SAILEN PRASAD, B. Water stress effects on leaf growth and chlorophyll content but not the grain yield in traditional rice (Oryza sativa Linn.) genotypes of Assam, India II. Protein and proline status in seedlings under PEG induced water stress. American Journal of Plant Sciences, v. 3, n. 7, p. 971-980, 2012. JOHANSSON, I.; KARLSSON, M.; SHUKLA, V. K.; CHRISPEELS, M. J.; LARSSON, C.; KJELLBOM, P. Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. The Plant Cell Online, v. 10, n. 3, p. 451-459, 1998. JULIANO, B. O.; BECHTEL, D. B. The rice grain and its gross composition. In: JULIANO, B. O. (ed.). Rice Chemistry and Technology. American Association of Cereal Chemistry. Minnesota, 1985. p. 77-107. JUNIOR, ?. B.; ROSSIELLO, R. O. P.; SILVA, R. V. M. M.; RIBEIRO, R. C.; MORENZ, M. J. F. Um novo clorofil?metro para estimar os teores de clorofila em folhas do capim Tifton 85. Ci?ncia Rural, v. 42, n. 12, p. 2241-2245, 2012. KAMOSHITA, A.; RODRIGUEZ, R.; YAMAUCHI, A.; WADE, L. Genotypic variation in response of rainfed lowland rice to prolonged drought and rewatering. Plant Production Science, v. 7, n. 4, p. 406-420, 2004. KANO, M.; INUKAI, Y.; KITANO, H.; YAMAUCHI, A. Root plasticity as the key root trait for adaptation to various intensities of drought stress in rice. Plant and Soil, v. 342, n. 1-2, p. 117-128, 2011. KARABA, A.; DIXIT, S.; GRECO, R.; AHARONI, A.; TRIJATMIKO, K. R.; MARSCH-MARTINEZ, N.; PEREIRA, A. Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proceedings of the National Academy of Sciences, v. 104, n. 39, p. 15270-15275, 2007. KATO, Y.; ABE, J.; KAMOSHITA, A.; YAMAGISHI, J. Genotypic variation in root growth angle in rice (Oryza sativa L.) and its association with deep root development in upland fields with different water regimes. Plant and Soil, v. 287, n. 1-2, p.117-129, 2006. KAWAHARA, Y.; DE LA BASTIDE, M.; HAMILTON, J. P.; KANAMORI, H.; MCCOMBIE, W. R.; OUYANG, S.; CHILDS, K. L. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice, v. 6, n. 4, p. 1-10, 2013. KELLEY, L. A.; GARDNER, S. P.; SUTCLIFFE, M. J. An automated approach for clustering an ensemble of NMR-derived protein structures into conformationally related subfamilies. Protein Engineering. v.11, p.1063-1065, 1996. KHONG, G. N.; RICHAUD, F.; COUDERT, Y.; PATI, P. K.; SANTI, C.; P?RIN, C.; GANTET, P. Modulating rice stress tolerance by transcription factors. Biotechnology and Genetic Engineering Reviews, v. 25, n. 1, p. 381-404, 2008. KITSIOS, G.; DOONAN, J. H. Cyclin dependent protein kinases and stress responses in plants. Plant signaling & behavior, v. 6, n. 2, p. 204-209, 2011. KNIGHT, H. Calcium signaling during abiotic stress in plants. International review of cytology, v. 195, n.1, p. 269-324, 1999. KONDO, T.; KAJITA, R.; MIYAZAKI, A.; HOKOYAMA, M.; NAKAMURA-MIURA, T.; MIZUNO, S.; SAKAGAMI, Y. Stomatal density is controlled by a mesophyll-derived signaling molecule. Plant and cell physiology, v. 51, n. 1, p. 1-8, 2010. KUMAR, A.; DIXIT, S.; RAM, T.; YADAW, R. B.; MISHRA, K. K.; MANDAL, N. P. Breeding high-yielding drought-tolerant rice: genetic variations and conventional and molecular approaches. Journal of Experimental Botany, v. 1, n. 1, p. 363, 2014A. KUMAR, R. R.; KARAJOL, K.; NAIK, G. R. Effect of polyethylene glycol induced water stress on physiological and biochemical responses in pigeonpea (Cajanus cajan L. Millsp.). Recent Research in Science and Technology, v. 3, n. 1, p. 148-152, 2011. KUMAR, S.; DWIVEDI, S. K.; SINGH, S. S.; JHA, S. K.; LEKSHMY, S.; ELANCHEZHIAN, R.; BHATT, B. P. Identification of drought tolerant rice genotypes by analysing drought tolerance indices and morpho-physiological traits. SABRAO Journal of Breeding & Genetics, v. 46, n. 2, p. 217-230, 2014B. LADEANA, W. H.; REINKE, V.; GREEN, P.; HIRST, M.; MARRA, M. A.; WATERSTON, R. H. Massively parallel sequencing of the polyadenylated transcriptome of C. elegans. Genome Research, v. 19, n. 4, p. 657-666, 2009. LAFITTE, H. R.; COURTOIS, B.; ARRAUDEAU, M. Genetic improvement of rice in aerobic systems: progress from yield to genes. Field Crops Research, v. 75, n. 2, p. 171-190, 2002. LAFITTE, H. R.; PRICE, A. H.; COURTOIS, B. Yield response to water deficit in an upland rice mapping population: associations among traits and genetic markers. Theoretical and Applied Genetics, v. 109, n. 6, p. 1237-1246, 2004. LANG, N. T.; QUANG, N.; BINH, C.; NHA, C. T.; BUU, B. C. A candidate gene response to drought stress condition in rice (Oryza sativa L.). Omonrice, v. 113, p. 105?113, 2010. LARCHER, W. Ecofisiologia vegetal. S?o Carlos: Rima, 2000. 531p LAROSA, P. C.; RHODES, D.; RHODES, J. C.; BRESSAN, R. A.; CSONKA, L. N. Elevated accumulation of proline in NaCl-adapted tobacco cells is not due to altered ?1-pyrroline-5-carboxylate reductase. Plant physiology, v. 96, n. 1, p. 245-250, 1991. LARTAUD, M.; PERIN, C.; COURTOIS, B.; THOMAS, E.; HENRY, S.; BETTEMBOURG, M.; DIVOL, F.; LANAU, N.; ARTUS, F.; BUREAU, C.; VERDEIL, J. L. PHIV-RootCell: a supervised image analysis tool for rice root anatomical parameter quantification. Frontiers in plant science. v. 5, n. 790, p. 1-7, 2014. LAWLOR, D. W.; CORNIC, G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment, v. 25, n. 2, p. 275-294, 2002. LEFEBVRE, V.; NORTH, H.; FREY, A.; SOTTA, B.; SEO, M.; OKAMOTO, M.; MARION?POLL, A. Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. The Plant Journal, v. 45, n. 3, p. 309-319, 2006. LI, H. W.; ZANG, B. S.; DENG, X. W.; WANG, X. P. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta, v. 234, n. 5, p. 1007-1018, 2011. LI, J. Y.; WANG, J.; ZEIGLER, R. S. The 3,000 Rice Genomes Project. GigaScience, v. 3, n. 8, p. 1-3, 2014. LI, J.; HAN, Y.; LIU, L.; CHEN, Y.; DU, Y.; ZHANG, J.; ZHAO, Q. qRT9, a quantitative trait locus controlling root thickness and root length in upland rice. Journal of experimental botany, v. 66, n. 9, p. 2723-2732, 2015. LIAN, H. L.; YU, X.; YE, Q.; DING, X. S.; KITAGAWA, Y.; KWAK, S. S.; SU, W.; TANG, Z. C. The role of aquaporin RWC3 in drought avoidance in rice. Plant and Cell Physiology, v. 45, n. 4, p. 481-489, 2004. LIMA, J. M.; NATH, M.; DOKKU, P.; RAMAN, K. V.; KULKARNI, K. P.; VISHWAKARMA, C.; ROBIN, S. Physiological, anatomical and transcriptional alterations in a rice mutant leading to enhanced water stress tolerance. AoB Plants, v. 7, n.1, p. 1-19, 2015. LISTER, R.; O?MALLEY, R. C.; TONTI-FILIPPINI, J.; GREGORY, B. D.; MILLAR, A. H.; ECKER, J. R. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell, v. 133, n. 3, p. 523-536, 2008. LIU, C.; MAO, B.; OU, S.; WANG, W.; LIU, L.; WU, Y.; WANG, X. A bZIP transcription factor, confers salinity and drought tolerance in rice. Plant molecular biology, v. 84, n. 1-2, p. 19-36, 2014. LIU, G. L.; MEI, H. W.; YU, X. Q.; ZOU, G. H.; LIU, H. Y.; HU, S. P.; LUO, L. J. QTL analysis of panicle neck diameter, a trait highly correlated with panicle size, under well-watered and drought conditions in rice (Oryza sativa L.). Plant Science, v. 174, n. 1, p. 71-77, 2008. LIVAK, K. J.; SCHMITTGEN, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2? ??CT method. methods, v. 25, n. 4, p. 402-408, 2001. LOBELL, D. B.; GOURDJI, S. M. The influence of climate change on global crop the influence of climate change on global crop. Plant Physiology, v. 160, n. 4, p. 1686?1697, 2012. LU, T.; LU, G.; FAN, D.; ZHU, C.; LI, W.; ZHAO, Q.; HAN, B. Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome research, v. 20, n. 9, p. 1238-1249, 2010. LUM, M. S.; HANAFI, M. M.; RAFII, Y. M.; AKMAR, A. S. N. Effect of drought stress on growth, proline and antioxidant enzyme activities of upland rice. Journal of Animal and Plant Science, v. 24, n. 5, p. 1487-1493, 2014. LUND, S. P.; NETTLETON, D.; MCCARTHY, D. J.; SMYTH, G. K. Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. Statistical Applications in Genetics and Molecular Biology, v. 11, n. 5, p. 8, 2012. MA, N.; WANG, Y.; QIU, S.; KANG, Z.; CHE, S.; WANG, G.; HUANG, J. Overexpression of OsEXPA8, a root-specific gene, improves rice growth and root system architecture by facilitating cell extension. PloS one, v. 8, n. 10, p. e75997, 2013. MAHAJAN, S.; TUTEJA, N. Cold, salinity and drought stresses: An overview; Archives of Biochemistry and Biophysics, v. 444, n. 2, p. 139?158, 2006. MANSCHADI, A. M.; CHRISTOPHER, J.; HAMMER, G. L. The role of root architectural traits in adaptation of wheat to water-limited environments. Functional Plant Biology, v. 33, n. 9, p. 823-837, 2006. MAPA. A cultura do arroz no Brasil. 2012. Dispon?vel em: http://www.agricultura.gov.br/vegetal/culturas/arroz/. Acessado em 17/01/2013. MARDIS, E. R. The impact of next-generation sequencing technology on genetics. Trends in genetics, v. 24, n. 3, p. 133-141, 2008. MARE, C.; MAZZUCOTELLI, E.; CROSATTI, C.; FRANCIA, E.; CATTIVELLI, L. Hv-WRKY38: a new transcription factor involved in cold-and drought-response in barley. Plant molecular biology, v. 55, n. 3, p. 399-416, 2004. MARIONI, J. C.; MASON, C. E.; MANE, S. M.; STEPHENS, M.; GILAD, Y. RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome research, v. 18, n. 9, p. 1509-1517, 2008. MARSHALL, A.; AALEN, R.B.; AUDENAERT, D.; BEECKMAN, T.; BROADLEY, M.R.; BUTENKO, M.A.; CA?O-DELGADO, A.I.; DE VRIES, S.; DRESSELHAUS, T.; FELIX, G.; GRAHAM, N.S.; FOULKES, J.; GRANIER, C.; GREB, T.; GROSSNIKLAUS, U.; HAMMOND, J.P.; HEIDSTRA, R.; HODGMAN, C.; HOTHORN, M.; INZ?, D. ?STERGAARD, L.; RUSSINOVA, E.; SIMON, R.; SKIRYCZ, A.; STAHL, Y.; ZIPFEL, C.; DE SMET, I. Tackling Drought Stress : RECEPTOR-LIKE KINASES Present New Approaches. The Plant Cell, v. 24, n. 6, p. 2262?2278, 2012. MCGETTIGAN, P. A. Transcriptomics in the RNA-seq era. Current Opinion in Chemical Biology, v. 17, n. 1, p. 4-11, 2013. MOHAN, M. M.; NARAYANAN, S. L.; IBRAHIM, S. M. Chlorophyll stability index (CSI): its impact on salt tolerance in rice. International Rice Research Notes, v. 25, n. 2, p. 38-39, 2000. MOROZOVA, O.; MARRA, M. A. Applications of next-generation sequencing technologies in functional genomics. Genomics, v. 92, p. 255-264, 2008. MORTAZAVI, A.; WILLIAMS, B. A.; MCCUE, K.; SCHAEFFER, L.; WOLD, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, v. 5, p. 621?628, 2008. MOSTAJERAN, A.; RAHIMI-EICHI, V. Effects of drought stress on growth and yield of rice (Oryza sati |
Page generated in 0.0077 seconds