Return to search

Exploring pumped energy storage market opportunities in Sweden : A cost analytic comparison between different energy storage technologies

The project has been about the exploration of using abandoned mines in the SE3 area in Sweden about the ability of using them as a lower reservoir in PHS application. The main purpose of this work was to investigate the profitability of different ESS and mainly focusing on PHS technology and focusing on an economical model called LCOE. LCOE measured cost during lifetime per energy during lifetime which is a good value to compare different ESS technologies. The comparison was between PHS, CAES, GES & Lithium-ion battery. Furthermore, an investigation about selection of potential mines in SE3 area with profitable head was made as a part of the result. The methodology for this degree work was a current- and literature study, mostly the method focusing on found good information for our research question from a source-critical and scientific perspective. One of this degree works delamination was to look at mines for PHS down to 300 meters, a result of this according to the assumptions show that the maximum power output was 27 MW from Pershytte övre gruvfält with a head of 300 m. The lowest power outputs from this selection of mines were 5 MW in Grängesberg with a head of 55 m. Another part of the result was to show the potential energy in the upper reservoir with different potential volumes assumed that the volume flow is constant. The maximum useful energy value was 321 MWh, from 12 hours discharge time from a head of 300 meters, the minimum value was only 19,4 MWh, from 4 hours discharge time and a head of 55 meters. Different ESS have different lifetime, efficiency, generation time and capital cost. The result between PHS and CAES, which have the same cycles and generation time, show that the LCOE value is slightly more profitable for CAES. But the PHS technology have better efficiency than CAES which lead to better possibilities during operation linked to electricity price during discharge and recharge. In this work, every studied technology has their own graph for LCOE which is the price that the electricity should be sold for to break-even and get back the investment cost during the lifetime according to the definition of LCOE.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mdh-67972
Date January 2024
CreatorsHeldesjö, Erik, Johansson, Anton
PublisherMälardalens universitet, Akademin för ekonomi, samhälle och teknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0112 seconds