Nuclear quadropole spectroscopy is a modern analytical method for detecting specific solid state materials, e.g. explosives, drugs etc. It uses phenomenon of atomic nucleus called nuclear quadrupole moment. NQR method is very similar to common nuclear magnetic resonance (NMR) that is why major principles are explained using NMR. The thesis deals with basic principle of NQR, its usage for explosives detection and also detection of other chemical compounds and many other useful applications. The thesis deals with specific circuit design, techniques for sufficient sensitivity, impedance matching and circuit isolation. Practical part consists of simulations as well as designs of a few impedance transformers, pi-networks, and coils. Also experimental probe was created. In the last part, NQR workplace was assembled and a few chemical compounds were detected. These were KClO3, NaClO3 and NaNO2 . Finally minimum detectable amount of potassium chlorate as the strongest signal of these was determined.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:219990 |
Date | January 2013 |
Creators | Procházka, Michal |
Contributors | Bartušek, Karel, Steinbauer, Miloslav |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0021 seconds