Powder mixing is an essential operation in various industrial fields, such as pharmaceuticals, agro-food, cements, etc. Continuous powder mixing, as an alternative to conventional batch mixing, has attracted a lot of interest mainly due to its capacity in handling high volume manufacturing. This work aims at the contribution to the implementation of process control applications for powder mixing in a pilot-scale continuous mixer. Prior to developing process control strategies, new developments have been presented for better understanding continuous mixing of two components. Hold-up weight and relative hold-up weight distribution of each component in the whole mixer have been experimentally investigated under different operating conditions. An improved Markov chain model has been finally presented to predict the mean concentration of the mixtures obtained at the mixer's outlet. The implementation of a proportional-integral-derivative (PID) controller has been experimentally performed as an initial attempt to real-time control the homogeneity of the mixture produced. The rotational speed of the stirrer, identified as an important deciding factor towards the mixer's efficiency, has been considered as the manipulated variable. The closed-loop control is based on either the mean concentration or the relative standard deviation. The performances of the proposed closed-loops have been evaluated for continuous mixing subjected to step changes in feed rates of the mixer. Four case studies have been defined and presented. The main challenge in the process control system is the tuning of PID parameters. The performance of closed-loop control of either the mean concentration or the relative standard deviation has been compared to open-loop operation.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00975251 |
Date | 26 November 2013 |
Creators | Zhao, Xiaojuan |
Publisher | Ecole des Mines d'Albi-Carmaux |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | English |
Type | PhD thesis |
Page generated in 0.0019 seconds