Return to search

Modeling an Embedded Climate System Using Machine Learning

Recent advancements in processing power, storage capabilities, and availability of data, has led to improvements in many applications through the use of machine learning. Using machine learning in control systems was first suggested in the 1990s, but is more recently being implemented. In this thesis, an embedded climate system, which is a type of control system, will be looked at. The ways in which machine learning can be used to replicate portions of the climate system is looked at. Deep Belief Networks are the machine learning models of choice. Firstly, the functionality of a PID controller is replicated using a Deep Belief Network. Then, the functionality of a more complex control path is replicated. The performance of the Deep Belief Networks are evaluated at how they compare to the original control portions, and the performance in hardware. It is found that the Deep Belief Network can quite accurately replicate the behaviour of a PID controller, whilst the performance is worse for the more complex control path. It was seen that the use of delays in input features gave better results than without. A climate system with a Deep Belief Network was also loaded onto hardware. The minimum requirements of memory usage and CPU usage were met. However, the CPU usage was greatly affected, and if this was to be used in practice, work should be done to decrease it. / Många applikationer har förbättras genom användningen av maskininlärning. Maskininlärning för reglersystem föreslogs redan på 1990-talet och har nu börjat tillämpas, eftersom processorkraft, lagringsmöjligheter och tillgänglighet till rådata ökat. I detta examensarbete användes ett inbäddat klimatsystem, som är en typ av reglersystem. Maskininlärningsmodellen Deep Belief Network användes för att undersöka hur delar av klimatsystemet skulle kunna återskapas. Först återskapades funktionaliteten hos en PID-regulator och sedan funktionaliteten av en mer komplex del av reglersystemet Prestandan hos nätverken utvärderades i jämförelse med prestandan i de ursprungliga kontrolldelarna och hårdvaran. Det visade sig att Deep Belief Network utmärkt kunde replikera PID-regulatorns beteende, medan prestandan var lägre för den komplexa delen av reglersystemet. Användningen av fördröjningar i indata till nätverken gav bättre resultat än utan. Ett klimatsystem med ett Deep Belief Network laddades också över på hårdvaran. Minimikrav för minnesanvändning och CPU- användning var uppfyllda, men CPU- användningen påverkades kraftigt. Detta gör, att om maskininlärning ska kunna användas i verkligheten, bör CPU-användningen minskas.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-290676
Date January 2021
CreatorsJosefsson, Alexandra
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2021:2

Page generated in 0.0025 seconds