Microglia, immune cells of the central nervous system, activate in response to pathophysiological stimuli. One of their reactive phenotypes is to migrate to site of injury where they could have either beneficial or detrimental effects. However, little is known regarding the mechanisms underlying microglial migration and how they traverse the unique extracellular environment in brain tissue to reach their destination. Our laboratory first discovered that microglia express structures called podosomes, which can adhere to as well as degrade extracellular matrix. In this study, I further characterize microglial podosomes, and show that they associate with Iba1, Orai1 and calmodulin, proteins not yet observed in podosomes of other cell types. I also present evidence that podosome formation depends on Ca2+ and its entry through store-operated Ca2+ channels. The findings in this thesis contribute to a better understanding of podosome dynamics and their probable roles in microglia migration.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/32286 |
Date | 26 March 2012 |
Creators | Siddiqui, Tamjeed |
Contributors | Schlichter, Lyanne |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0018 seconds