Within the framework of this thesis, photolysis reactions in the liquid phase were investigated by means of ultrafast optical spectroscopy. Apart from molecular studies dealing with the highly spin-dependent reactivity of diphenylcarbene (DPC) in binary solvent
mixtures and ligand dissociation reactions of so-called CO-releasing molecules (CORMs),
special emphasis was put on the implementation and characterization of methods improving
and extending the signal detection in conventional pump–probe transient absorption setups.
The assumption of DPC being an archetypal triplet-ground-state arylcarbene was recently questioned by matrix-isolation studies at low temperatures. DPC embedded in argon matrices revealed a hitherto unknown reactivity when the carbene environment was modified by small amounts of methanol dopant molecules. To complement these findings with liquid-phase experiments at room temperature, femtosecond pump–probe transient absorption spectroscopy with probing in the visible and ultraviolet regime was employed to unravel primary reaction processes of DPC in solvent mixtures. Supported by quantum chemical simulations conducted by our collaborators, it was shown that a competition between the reaction pathways occurs that not only depends on the solvent molecule near-by but also on its interaction with other solvent molecules. In-depth analysis of the solvation dynamics and the amount of nascent intermediates corroborates the importance of a hydrogen-bonded complex with a protic solvent molecule, in striking analogy to complexes found at cryogenic temperatures.
Probing the transient absorption of molecules in the mid-infrared spectral range benefits from the high chemical specificity of molecules’ vibrational signatures. The technique of chirped-pulse upconversion (CPU) constitutes a promising alternative to standard direct multichannel MCT detection when accessing this spectral detection window. Hence, one chapter of this thesis is dedicated to a direct comparison between both detection methods. By conducting an exemplary pump–probe transient absorption experiment, it became evident, that the additional nonlinear interaction step is responsible for increased noise levels when using CPU. However, a correction procedure capable of removing these additional noise contributions—stemming from the fundamental laser radiation used for upconversion—was successfully tested. Perhaps most importantly for various spectroscopic applications, CPU scored with a significantly extended detection bandwidth owing to the high pixel numbers of modern CCD cameras.
Transition-metal complexes capable of releasing small molecular messengers upon photoactivation are promising sources of gasotransmitters such as carbon monoxide (CO) or nitric oxide (NO) in biological applications. However, only little is known about the characteristic time scales of ligand dissociation in this class of molecules. For this purpose, two complexes were investigated with femtosecond time resolution: [Mn(CO)3(tpm)]Cl with tpm=tris(2-pyrazolyl)methane, a manganese tricarbonyl complex which has proven to be selective and cytotoxic to cancer cells, and [Mo(CO)2(NO)(iPr3tacn)]PF6 with iPr3tacn=1,4,7-triisopropyl-1,4,7-triazacyclononane, a molybdenum complex containing both carbonyl and nitrosyl ligands. By conducting pump–probe transient absorption measurements in different spectral probing windows supported by quantum chemical calculations and linear absorption spectroscopy, it was shown that both complexes are able to release one CO ligand within the first few picoseconds after UV excitation. The results complement existing studies which focused on the molecules’ ligand-releasing properties upon long-term exposure. The additional information gained on an ultrafast time scale provides a comprehensive understanding of individual reaction steps connected with ligand release in this class of molecules. Hence, the studies might create new incentives to develop modified molecules for specific applications. / Im Rahmen dieser Dissertation wurden Methoden der ultraschnellen optischen Spektroskopie
angewandt, um Photolysereaktionen in der flüssigen Phase zu untersuchen. Neben molekularen Studien, welche sich mit der stark spin-abhängigen Reaktivität von Diphenylcarben (DPC) in binären Lösungsmittelgemischen und den Ligandendissoziationsreaktionen von sogenannten CO-freisetzenden Molekülen (CORMs, engl.: CO-releasing molecules) befassten, war ein wesentlicher Bestandteil dieser Arbeit die Implementierung und Charakterisierung von Methoden zur Verbesserung und Erweiterung der Signaldetektion in Aufbauten zur zeitaufgelösten Anrege-Abfrage-Spektroskopie.
Die generelle Annahme, dass es sich bei DPC um ein archetypisches Triplett-Grundzustands-Arylcarben handelt, wurde kürzlich durch Matrixisolationsstudien in Frage gestellt. In jenen Untersuchungen offenbarte DPC, eingebettet in Argon-Matrizen, durch die Modifizierung der Carbenumgebung mit geringen Mengen an Methanol-Dotiermolekülen, eine bislang unbekannte Reaktivität. Komplementär dazu wurden im Rahmen dieser Arbeit Messungen in der flüssigen Phase bei Raumtemperatur durchgeführt. Femtosekundenzeitaufgelöste Anrege-Abfrage-Spektroskopie mit Abfragepulsen aus dem sichtbaren und ultravioletten Spektralbereich diente dabei zur Aufkläung der primären Reaktionsprozesse von DPC in Lösungsmittelgemischen. Es zeigte sich, unterstützt durch quantenchemische Simulationen unserer Kollaborateure, dass konkurrierende Reaktionspfade auftreten, welche nicht nur von den Lösungsmittelmolekülen in der unmittelbaren Umgebung abhängen, sondern auch von deren Wechselwirkung mit anderen Lösungsmittelmolekülen. Eine ausführliche Analyse, sowohl der Solvatationsdynamiken als
auch der Menge an aufkommenden Intermediaten, bekräftigte die Bedeutung eines Komplexes
der durch Wasserstoffbrückenbindung mit einem protischen Lösungmittelmolekül entsteht — in auffallender Ähnlichkeit zu Komplexen die bei kryogenen Temperaturen gefunden wurden.
Das Abfragen der transienten Absorption eines Moleküls im mittleren Infrarot wird
durch die hohe chemische Spezifität von molekularen Schwingungssignaturen begünstigt.
Um dieses spektrale Fenster zu untersuchen, bietet die CPU-Methode (engl.: chirped-pulse upconversion) eine vielversprechende Alternative zur konventionellen direkten Mehrkanal MCT-Detektion. Daher widmet sich ein Kapitel dieser Arbeit einem direkten Vergleich der beiden Detektionsmethoden. Im Rahmen eines exemplarischen Anrege-Abfrage-Experiments zeigte sich, dass die zusätzliche nichtlineare Wechselwirkung zu einem erhöhten Rauschniveau bei der Verwendung der CPU-Technik führt. Dennoch konnte eine Korrekturprozedur erfolgreich getestet werden, die es ermöglicht, jene zusätzlichen Rauschbeiträge, die durch Fluktuationen der fundamentalen Laserstrahlung hervorgerufen werden, zu entfernen. Am wichtigsten für eine Vielzahl spektroskopischer Anwendungen ist jedoch, dass die CPU-Technik auf Grund der hohen Pixel-Anzahl moderner CCD-Kameras mit einer signifikant erhöhten Detektionsbandbreite punkten kann.
Für biologische Anwendungen besteht steigendes Interesse an Molekülen zur kontrollierten
Verabreichung von Gasotransmittern wie Kohlenstoffmonoxid (CO) oder Stickstoffmonoxid
(NO). Vielversprechend sind hierbei Übergangsmetallkomplexe, welche in der Lage sind, jene kleinen Signalmoleküle nach Photoanregung freizusetzen. Dennoch ist nur sehr wenig über die charakteristischen Zeitskalen der Ligandendissoziation in dieser Molekülklasse bekannt. Daher wurden im Rahmen dieser Arbeit zwei Komplexe mit Femtosekundenzeitauflösung untersucht: [Mn(CO)3(tpm)]Cl mit tpm=tris(2-pyrazolyl)methane, ein Mangankomplex mit drei Carbonylliganden, desses selektive und zytotoxische Wirkung gegenüber Krebszellen nachgewiesen ist, und [Mo(CO)2(NO)(iPr3tacn)]PF6 mit iPr3tacn=1,4,7-triisopropyl-1,4,7-triazacyclononane, ein Molybdänkomplex, der sowohl CO- als auch NO-Liganden enthält. Mit Hilfe von Anrege-Abfrage-Spektroskopie in verschiedenen spektralen Bereichen, unterstützt durch quantenchemische Berechnungen und lineare Absorptionsspektroskopie, konnte gezeigt
werden, dass beide Komplexe jeweils einen CO-Liganden innerhalb der ersten Pikosekunden
nach UV-Anregung abspalten können. Die Ergebnisse ergänzen bestehende Studien, welche die Ligandenfreisetzungseigenschaften der Moleküle unter Langzeitbelichtung untersuchten.
Die zusätzliche Information – gewonnen auf der ultraschnellen Zeitskala – ermöglicht ein umfassendes Verständnis der einzelnen Reaktionsschritte, welche mit der Ligandendissoziation in dieser Molekülklasse verbunden sind. Daher könnten die Studien neue Anreize zur Entwicklung modifizierter Moleküle schaffen, welche für spezifische Anwendungen geeignet sind.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:13136 |
Date | January 2015 |
Creators | Knorr, Johannes Walter |
Source Sets | University of Würzburg |
Language | English |
Detected Language | English |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://creativecommons.org/licenses/by-nc-nd/3.0/de/deed.de, info:eu-repo/semantics/openAccess |
Page generated in 0.0035 seconds