La recherche et l'indexation de données en fonction d'une date ou d'une zone géographique permettent le partage et la découverte d'informations géolocalisées telles que l'on en trouve sur les réseaux sociaux comme Facebook, Flickr, ou Twitter. Cette réseau social connue sous le nom de Location Based Social Network (LBSN) s'applique à des millions d'utilisateurs qui partagent et envoient des requêtes ciblant des zones spatio-temporelles, permettant d'accéder à des données géolocalisées générées dans une zone géographique et dans un intervalle de temps donné. Un des principaux défis pour de telles applications est de fournir une architecture capable de traiter la multitude d'insertions et de requêtes spatio-temporelles générées par une grande quantité d'utilisateurs. A ces fins, les Tables de Hachage Distribué (DHT) et le paradigme Pair-à-Pair (P2P) sont autant de primitives qui forment la base pour les applications de grande envergure. Cependant, les DHTs sont mal adaptées aux requêtes ciblant des intervalles donnés; en effet, l'utilisation de fonctions de hachage sacrifie la localité des données au profit d'un meilleur équilibrage de la charge. Plusieurs solutions ajoutent le support de requêtes ciblant des ensembles aux DHTs. En revanche ces solutions ont tendance à générer un nombre de messages et une latence élevée pour des requêtes qui ciblent des intervalles. Cette thèse propose deux solutions à large échelle pour l'indexation des données géolocalisées. / Indexing and retrieving data by location and time allows people to share and explore massive geotagged datasets observed on social networks such as Facebook, Flickr, and Twitter. This scenario known as a Location Based Social Network (LBSN) is composed of millions of users, sharing and performing location-temporal range queries in order to retrieve geotagged data generated inside a given geographic area and time interval. A key challenge is to provide a scalable architecture that allow to perform insertions and location-temporal range queries from a high number of users. In order to achieve this, Distributed Hash Tables (DHTs) and the Peer-to-Peer (P2P) computing paradigms provide a powerful building block for implementing large scale applications. However, DHTs are ill-suited for supporting range queries because the use of hash functions destroy data locality for the sake of load balance. Existing solutions that use a DHT as a building block allow to perform range queries. Nonetheless, they do not target location-temporal range queries and they exhibit poor performance in terms of query response time and message traffic. This thesis proposes two scalable solutions for indexing and retrieving geotagged data based on location and time.
Identifer | oai:union.ndltd.org:theses.fr/2017PA066106 |
Date | 06 April 2017 |
Creators | Cortés, Rudyar |
Contributors | Paris 6, Marin, Olivier-Gilles, Sens, Pierre |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0017 seconds