De nombreux problèmes scientifiques et industriels ont besoin de la résolution de systèmes linéaires non symétriques à grande échelle, qui sont décrits par des matrices creuses de très grande taille. On utilise fréquemment dans ce cas des méthodes numériques itératives et on fait appel au parallélisme pour une résolution rapide et efficace. L'algorithme GMRES(m) est une méthode itérative qui donne de bons résultats dans la plupart des cas. Mais on observe une limitation à sa parallélisation en raison des nombreuses communications produites. Dans quelques cas, la convergence est atteinte très lentement, voire jamais. Nous présentons dans cette thèse une méthode hybride GMRES(m)/LS-Arnoldi qui accélère la convergence grâce à la connaissance des valeurs propres calculées parallèlement par la méthode d'Arnoldi pour les cas réels, avec son implantation sur des supercalculateurs. Une extension aux cas complexes est également étudiée. La dernière tendance du calcul global, le calcul de grille, propose l'exploitation massive des ressources vacantes des réseaux locaux ainsi que sur Internet. Son avantage peut être énorme pour l'exécution d'applications parallèles. L'environnement XtremWeb est un système de grille léger, tolérant aux défaillances et sécurisé pour l'exécution d'applications parallèles. Il est un environnement de calcul haute-performance, une plate- forme de grille logicielle d'expérimentation pour des institutions académiques ou industrielles. Nous présentons dans cette thèse les implantations de la méthode GMRES(m) sur ce système de grille XtremWeb ainsi que sur un environnement distribué de calcul LAM-MPI. Nous avons fait de multiples tests sur grille et supercalculateur. Des performances que nous avons obtenues, nous constatons les avantages et les inconvénients de ces plates-formes de calcul différentes.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00431124 |
Date | 08 July 2005 |
Creators | He, Haiwu |
Publisher | Université des Sciences et Technologie de Lille - Lille I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0054 seconds