Le pancréas est un organe hétérogène composé d’une partie exocrine, responsable de la synthèse d’enzymes pour la digestion, et d’une partie endocrine, essentielle pour l’homéostasie glucidique. Notamment la sécrétion d’insuline par les cellules β contrôle la glycémie. Les dysfonctionnements des cellules β sont une des causes du diabète, première épidémie non infectieuse au monde. Il est actuellement possible d’en traiter les symptômes mais pas de le guérir. De nombreux laboratoires recherchent un protocole idéal de production de cellules β afin de pouvoir greffer ces cellules aux patients. L’identification des facteurs qui gouvernent chaque étape du développement des cellules β devrait permettre de progresser dans ce sens. Le but de ma thèse a été d’étudier le rôle des Espèces Réactives de l’Oxygène (ROS) au cours du développement pancréatique. Cette question a été soulevée lorsque nous avons analysé l’expression des gènes codant pour les enzymes détoxifiantes des ROS: leur expression était extrêmement réduite dans les pancréas embryonnaires comparés aux pancréas adultes, suggérant que les précurseurs sont particulièrement sensibles aux variations des ROS. Nous avons ensuite montré que la réduction des ROS in vivo, obtenue par un traitement avec un antioxydant (NAC), diminue le développement des cellules β. Une analyse in vitro a permis de détailler les mécanismes de l’action des ROS. En effet, le peroxyde d’hydrogène favorise la différenciation des cellules β en augmentant l’expression du facteur pro-endocrine Ngn3 dans les progéniteurs. Ce processus implique l’activation la voie ERK1/2 par les ROS. Au contraire, la diminution des ROS induite par des méthodes génétiques ou pharmacologiques altère la différenciation des cellules β. Nos résultats indiquent également que la mitochondrie est impliquée dans ce processus. Nous avons donc montré que la présence des ROS est essentielle pour le bon développement du pancréas. Ces recherches devraient donc permettre de progresser vers une thérapie cellulaire du diabète. / The pancreas is an heterogenous gland composed by exocrine tissue, responsible for digestive enzyme secretions, and endocrine tissue, essential for glucose homeostasis. In particular β cells secrete insulin which controls glycemia. Moreover, β cell failure is one of the primary causes of diabetes and this pathology is nowadays considered as the first non infectious worldwide outbreak. There is unfortunately no cure for this disease. Many laboratories are currently improving β cell generation protocols in order to inject those cells into patients. This is the reason why it appears mandatory to be able to identify factors that govern each step of β cell development. The aim of my work was to study the role of the Reactive Oxygen Species (ROS) during pancreatic development. First we found out that the expression of genes coding for antioxidant enzymes was extremely low in embryonic pancreas compared to adult pancreas. This suggested that progenitors could be sensitive to ROS variations. We then showed in vivo using an antioxidant component (NAC) that decreasing ROS level diminishes β cell development. Analysis in vitro allowed us to better describe the role of ROS. Indeed, hydrogen peroxyde favors β cell differentiation by increasing the pro-endocrine marker NGN3 expression in the progenitors. In this process, ROS activate the ERK1/2 signaling pathway. On the contrary, lowering ROS level using both pharmacologic and genetic approaches, decreases β cell differentiation. Our results also point out a role of the mitochondria in this process. Altogether, our data define the effects of ROS on β cell differentiation and open new perspectives to improve protocols of β cell generation.
Identifer | oai:union.ndltd.org:theses.fr/2015PA05T007 |
Date | 30 March 2015 |
Creators | Hoarau, Emmanuelle |
Contributors | Paris 5, Duvillie, Bertrand |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0133 seconds