Return to search

Regulation of Neuroblastoma Malignant Properties by Pannexin 1 Channels: Role of Post-Translational Modifications and Mutations

Neuroblastoma (NB) is the most common extracranial solid tumour in childhood. NB is thought to arise from the failed differentiation of neural crest progenitor cells that would normally form tissues of the adrenal gland and sympathetic nervous system. These neural crest progenitors then uncontrollably proliferate forming a tumour. Despite aggressive surgery and chemotherapy, the cure rate of high-risk NB patients remains below 30%. Our laboratory has shown that human NB tumour specimens and high-risk patient derived cell lines express pannexin 1 (PANX1), and that treatment with the PANX1 channel blockers carbenoxolone or probenecid constitute reduce NB progression in vitro and in vivo. PANX1 is a glycoprotein that forms single membrane channels best known to serve as conduits for ATP release. Interestingly, while PANX1 was also detected in control neurons by western blotting, its banding pattern was strikingly different as a band at around 50 kDa was found in all NB cell lines, but not in neurons. Using shRNA targeting PANX1 and deglycosylation enzymes, I have shown that this band corresponds to a PANX1 glycosylated species. PANX1 has been reported to be phosphorylated in NB at amino acid Y10. PANX1 is also predicted to be glycosylated at N255. In order to study the role of these post-translational modifications, myc-tagged Y10F and N255A PANX1 mutants were engineered by site-directed mutagenesis. Immunolocalization and cell surface biotinylation assays suggest that the localization both mutants at the cell surface is reduced compared to that of myc-PANX1. Dye uptake assays revealed that myc-Y10F has significantly reduced channel activity. Expression of myc-Y10F and myc-N255A in NB cells inhibited cell proliferation and decreased metastatic potential in vitro. Further analysis of NB tumour specimens revealed that there is a missense mutation in PANX1 resulting in the formation of truncated peptide (amino acid 1-99). Interestingly, I have found that when co-expressed with myc-PANX1, PANX11-99, reduced PANX1 channel activity. Taken together, these findings indicate that phosphorylation on Y10 and glycosylation on N255 regulate PANX1 channel activity and exacerbate NB malignancy, while the expression of PANX11-99 in NB may be beneficial.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/40085
Date17 January 2020
CreatorsHolland, Stephen Henry
ContributorsCowan, Kyle
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0018 seconds