Return to search

Apprentissage Supervisé Relationnel par Algorithmes d'Évolution

Cette thèse concerne l'apprentissage de règles relationnelles à partir d'exemples et de contre-exemples, à l'aide d'algorithmes évolutionnaires. Nous étudions tout d'abord un biais de langage offrant une expressivité suffisamment riche pour permettre de couvrir à la fois le cadre de l'apprentissage relationnel par interprétations et les formalismes propositionnels classiques. Bien que le coût de l'induction soit caractérisé par la complexité NP-difficile du test de subsomption pour cette classe de langages, une solution capable de traiter en pratique les problèmes réels complexes est proposée. Le système SIAO1, qui utilise ce biais de langage pour l'apprentissage de règles relationnelles est ensuite présenté. Il est fondé sur une stratégie de recherche évolutionnaire qui se distingue principalement des approches classiques par: - des opérateurs de mutation et de croisement dirigés par la théorie du domaine et par les exemples d'apprentissage; - le respect de la relation d'ordre définie sur le langage. L'évaluation du système sur plusieurs bases faisant référence en apprentissage automatique montre que SIAO1 est polyvalent, se compare favorablement aux autres approches et sollicite peu l'utilisateur en ce qui concerne la spécification de biais de recherche ou d'évaluation. La troisième partie de ce travail propose deux architectures parallèles génériques derivées des modèles maître-esclave asynchrone et du pipeline. Elles sont étudiées dans le cadre de l'extraction de connaissances à partir de données à l'aide de SIAO1 du point de vue de l'accélération qu'elles procurent d'une part et de leur capacité à changer d'échelle d'autre part. Un modèle de prédiction simple mais précis des performances de chacune des architectures parallèles est également proposé.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00947322
Date19 December 2000
CreatorsAugier, Sébastien
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0026 seconds