Les paramètres des Algorithmes Evolutionnaires (AEs) ont une forte influence sur leur capacité à produire de bons résultats. Ces paramètres définissent les aspects structuraux et comportementaux de l'AE, comme la définition des composants qui seront inclus (e.g., l'ensemble d'opérateurs à utiliser, le codage, le schéma de sélection) ou la façon dont ces composants seront employés (e.g., le taux d'application des opérateurs). La paramétrisation des AEs a ´et´e longtemps un domaine de spécialistes, et même si de nombreuses études ont abordé le problème de la paramétrisation, il existe un déficit d'approches génériques qui puissent être appliquées à une grande variété d'AEs d'une manière simple. Cette thèse traite le problème de la conception d'un contrôleur générique, qui puisse être inclus dans n'importe quel AE avec un minimum d'efforts. Ceci est accompli en incorporant un composant d'apprentissage adaptatif, qui surveille l'état de la recherche et modifie les valeurs des paramètres. Le contrôleur se focalise sur les objectifs communs à tout EA, i.e., la maximisation de la diversité de la population et de la qualité des individus, afin de maintenir un équilibre convenable entre l'exploration et l'exploitation. Des nombreuses configurations des mécanismes d'apprentissage et d'ajustement ont ´et´e essayées et analysées, en utilisant AEs différents qui résolvent des problèmes combinatoires connus. Les bons résultats obtenus suggèrent que notre objectif de construire un contrôleur générique et facile à utiliser constitue une approche encourageante.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00459185 |
Date | 24 June 2009 |
Creators | Maturana, Jorge |
Publisher | Université d'Angers |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0029 seconds