Return to search

Investigating modulatory effects of cerebrospinal fluid (CSF) samples from Parkinson’s Disease patients on neuronal cell cultures

Parkinson’s Disease (PD) is the second most common neurodegenerative disease (NDD) affecting approximately 1 - 2% of the population older than 65 and it is characterized by both motor and non-motor symptoms such as rest tremors, stooping posture, and rigidity. The neuromolecular basis of PD is quite complex and that is why there is a need for in vitro systems that can be utilized for studies of PD and NDDs in general. Human-derived cell lines are a good candidate for in vitro systems since they are easy to manipulate and are a less costly alternative to post-mortem human tissue sections or animal models. In this study, I optimize the Lund human mesencephalic (LUHMES) cell line differentiation protocol by determining that the optimal seeding density of cells is 37 500 cells/ml and that the differentiation media can contain quadruple the recommended concentration of tetracycline hydrochloride. Additionally, I use the differentiated LUHMES cells to conduct an exploratory study by treating the cells with cerebrospinal fluid (CSF) from PD patients and CSF from healthy individuals to investigate the neuromodulatory effects of the CSF on the neuronal cell culture. Cell viability assay showed neurotoxicity 24 hours post-treatment for the control CSF and 48 hours post-treatment for both control and PD CSF. Immunohistochemistry showed differential expression of proteins of interest that reflect hallmarks of neurodegenerative diseases. Further studies are needed to reach conclusive results.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-348360
Date January 2024
CreatorsStojcic, Bruno
PublisherKTH, Proteinvetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-CBH-GRU ; 2024:214

Page generated in 0.0022 seconds