Este trabalho trata das medidas de máxima entropia para certos difeomorfismos em nilvariedades. Considere um difeomorfismo parcialmente hiperbólico f definido em T3, dinamicamente coerente com folheação central compacta. Suponha ainda que a aplicação induzida por f no espaço das folhas centrais é um homeomorfismo de Anosov transitivo em T2. Mostramos que o conjunto das medidas ergódicas hiperbólicas de máxima entropia é enumerável. Usando o princípio de invariância, mostramos que se o primeiro retorno de f à alguma folha periódica tem número de rotação irracional, então, f tem no máximo duas medidas ergódicas de máxima entropia e ter apenas uma medida de máxima entropia equivale a ser extensão de rotação. Se a aplicação de primeiro retorno à alguma folha central periódica é Morse-Smale, então existe um su-toro periódico, ou temos uma cota superior para o número de medidas ergódicas de máxima entropia que depende do número de atratores da dinâmica nessa folha. Além disso, estudamos a topologia da bacia das medidas ergódicas de máxima entropia para uma outra classe de difeomorfismos especiais que são genéricos no espaço dos difeomorfismos absolutamente parcialmente hiperbólicos e denotada por SPH1(M). / This work is about maximal entropy measures for certain diffeomorphisms on nilmanifolds. Consider a partially hyperbolic diffeomorphism f on T3 , C2 , dinamically coherent with compact center foliation which is a circle bundle. Assume that the map induced by f on the space of center leaves is a transitive Anosov homeomorphism. We show that the set of hyperbolic ergodic maximal entropy measures of f is countable. Using the invariance principle, we show that if the first return map to some periodic leaf has irrational rotation number then f has at most two ergodic maximal entropy measures and, in this case, if f has only one maximal entropy measure then f is a rotation extension. If the first return map to some periodic leaf is Morse-Smale then either there exists some periodic su-torus or an upper bound for the number of ergodic maximal entropy measure depending on the number of the attractors of the dynamics in this leaf. Moreover, we study the topology of basin of ergodic maximal entropy measures of another set of special diffeomorphisms that are generic in the space of absolutely partially hyperbolic systems and denoted by SPH1(M).
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-30072018-114107 |
Date | 02 March 2018 |
Creators | Joás Elias dos Santos Rocha |
Contributors | Ali Tahzibi, Daniel Smania Brandão, Vilton Jeovan Viana Pinheiro, José Régis Azevedo Varão Filho |
Publisher | Universidade de São Paulo, Matemática, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0032 seconds