Nas últimas décadas, testemunhou-se um crescente interesse no estudo de sistemas complexos. Tais sistemas são compostos por pelo menos dois componentes fundamentais: elementos dinâmicos individuais e uma estrutura de organização definindo a forma de interação entre estes. Devido a dinâmica de cada elemento e a complexidade de acoplamento, uma grande variedade de fenômenos espaço-temporais podem ser observados. Esta tese tem como objetivo principal explorar o uso da dinâmica espaço-temporal em redes visando a solução de alguns problemas computacionais. Com relação aos mecanismos dinâmicos, a sincronização entre osciladores acoplados, a caminhada aleatória-determinística e a competição entre elementos na rede foram considerados. Referente à parte estrutural da rede, tanto estruturas regulares baseadas em reticulados quanto redes com estruturas mais gerais, denominadas redes complexas, foram abordadas. Este estudo é concretizado com o desenvolvimento de modelos aplicados a dois domínios específicos. O primeiro refere-se à utilização de redes de osciladores acoplados para construção de modelos de atenção visual. Dentre as principais características desses modelos estão: a seleção baseada em objetos, a utilização da sincronização/ dessincronização entre osciladores neurais como forma de organização perceptual, a competição entre objetos para aquisição da atenção. Além disso, ao comparar com outros modelos de seleção de objetos baseados em redes osciladores, um número maior de atributos visuais é utilizado para definir a saliência dos objetos. O segundo domínio está relacionado ao desenvolvimento de modelos para detecção de comunidades em redes complexas. Os dois modelos desenvolvidos, um baseado em competição de partículas e outro baseado em sincronização de osciladores, apresentam alta precisão de detecção e ao mesmo tempo uma baixa complexidade computacional. Além disso, o modelo baseado em competição de partículas não só oferece uma nova técnica de detecção de comunidades, mas também apresenta uma abordagem alternativa para realização de aprendizado competitivo. Os estudos realizados nesta tese mostram que a abordagem unificada de dinâmica e estrutura é uma ferramenta promissora para resolver diversos problemas computacionais / In the last decades, an increasing interest in complex system study has been witnessed. Such systems have at least two integrated fundamental components: individual dynamical elements and an organizational structure which defines the form of interaction among those elements. Due to the dynamics of each element and the coupling complexity, various spatial-temporal phenomena can be observed. The main objective of this thesis is to explore spatial-temporal dynamics in networks for solving some computational problems. Regarding the dynamical mechanisms, the synchronization among coupled oscillators, deterministic-random walk and competition between dynamical elements are taken into consideration. Referring to the organizational structure, both regular network based on lattice and more general network, called complex networks, are studied. The study of coupled dynamical elements is concretized by developing computational models applied to two specific domains. The first refers to the using of coupled neural oscillators for visual attention. The main features of the developed models in this thesis are: object-based visual selection, realization of visual perceptual organization by using synchronization / desynchronization among neural oscillators, competition among objects to achieve attention. Moreover, in comparison to other object-based selection models, more visual attributes are employed to define salience of objects. The second domain is related to the development of computational models applied to community detection in complex networks. Two developed models, one based on particle competition and another based on synchronization of Integrate-Fire oscillators, present high detection rate and at the same time low computational complexity. Moreover, the model based on particle competition not only offers a new community detection technique, but also presents an alternative way to realize artificial competitive learning. The study realized in this thesis shows that the unified scheme of dynamics and structure is a powerful tool to solve various computational problems
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-27052009-145639 |
Date | 24 March 2009 |
Creators | Marcos Gonçalves Quiles |
Contributors | Roseli Aparecida Francelin Romero, Zhao Liang, Emilio Del Moral Hernandez, Zhao Liang, Elbert Einstein Nehrer Macau, Antonio Carlos Roque da Silva Filho |
Publisher | Universidade de São Paulo, Ciências da Computação e Matemática Computacional, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds